# EOS of neutron star cores and spin down of pulsars

#### **Paweł Haensel**

Copernicus Astronomical Center (CAMK) Warszawa, Poland

haensel@camk.edu.pl

Isolated Neutron Stars

April 24-28, 2006, London (UK)

Image: A math a math

# Collaboration with M. Bejger (CAMK Warsaw/LUTH Meudon), J.L. Zdunik (CAMK Warsaw), and E. Gourgoulhon (LUTH Meudon)

#### Motivation

Isolated pulsar looses J due to radiation. In response to  $\dot{J}$  it changes  $f=1/{\rm period}=\Omega/2\pi$  (observable!) and increases central density and pressure  $\rho_{\rm c},~P_{\rm c}.$  Response to  $\dot{J}$  depends on the EOS of the neutron-star core, and is sensitive to appearance of new particles or of a new phase. Crossing the phase-transition region by  $\rho_{\rm c}$  is reflected by specific "nonstandard" behavior of f(t).

#### Plan

- Phase transitions and EOS full equilibrium
- Back bending and stability
- Stability and rotation
- Instability and corequakes
- Metastability and EOS
- Energy release in a corequake

A = A = A = A
A
A = A = A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

## 1st order N-S :thermodynamic equilibrium

#### pure N-S, density jump

Between two pure phases N and S, at some  $P_0$ , with density jump:  $\rho_{\rm N} < \rho_{\rm S}$ . Occurs for sufficiently strong pion or kaon condensation. Characteristic for many models of quark deconfinement.



#### pure N - mixed NS - pure S

Above  $P_{\rm N}^{(\rm m)}$  NS preferred over the pure N, with fraction of the S phase increasing from zero to one at  $P=P_{\rm S}^{(\rm m)}$ , and above  $P_{\rm S}^{(\rm m)}$  pure S phase is preferred. Might be possible for: meson condensations or quark matter, provided **surface tension** at the N-S interface is sufficiently small.

Paweł Haensel (CAMK)

## Stability of hydrostatic equilibria



#### Stability criteria - rotating stars

 $\begin{array}{l} \textit{Friedman, Ipser, Sorkin (1988)...} \\ \textit{Two-parameter family: } \mathcal{C}(x,\Omega) - \textbf{axially symmetric perturbations} - 2-D \\ \textit{Criteria I stable if } (\partial M/\partial x)_{J=const.} > 0 \\ \textit{Criteria II stable if } (\partial J/\partial x)_{M_{\rm b}=const.} > 0 \\ \textit{unstable if } (\partial J/\partial x)_{M_{\rm b}=const.} < 0 \\ \end{array}$ 

## Invariance of structure of (one-parameter) families $\{C_X\}$

#### $X = M_{\rm b}, J, f$ Zdunik, Bejger, Haensel, Gourgoulhon (2005,2006)





#### stable static $\implies$ stable rotating

#### unstable segment static $\implies$ unstable segment rotating $\langle \bigcirc \rangle$ $\langle \bigcirc \rangle$ $\langle \bigcirc \rangle$ $\langle \bigcirc \rangle$

## Invariance of structure of $\{C_X\}$ families - continued

 $X=M_{\rm b}, J, f$ 

#### Marginal instability

Marginally unstable configuration-inflection point  $(\partial M/\partial x)_{J=const.} = 0$  and  $(\partial^2 M/\partial x^2)_{J=const.} = 0$  $(\partial J/\partial x)_{M_{\rm b}=const.} = 0$  and  $(\partial^2 J/\partial x^2)_{M_{\rm b}=const.} = 0$ 

#### Conjectures

I All stable  $\{C\}_{\text{stat}}$  static remains all stable  $\{C_X\}_{\text{rot}}$ 

II If  $\{C\}_{\text{stat}}$  contains unstable segment then every  $\{C_X\}$  contains unstable segment too

 $\begin{array}{l} \text{III If } \{\mathcal{C}\}_{\text{stat}} \text{ contains a marginally} \\ \text{unstable } \mathcal{C} \text{ then each } \{\mathcal{C}_X\} \text{ contains a} \\ \text{marginally unstable } \mathcal{C}_X \end{array}$ 



## Conjectures $\approx$ Theorems because exceptions from them form a set of

Paweł Haensel (CAMK)

- single family of stable static configurations  $\Leftrightarrow$  single family of stable rotating configurations
- two disjoint families of stable static configurations separated by a family of unstable configurations  $\Leftrightarrow$ two disjoint families of stable rotating configurations separated by a family of unstable configurations (constant  $M_{\rm b}$ , or constant J, or constant f)

generic feature of EOSs with phase transitions, not changed by rigid rotation

イロト イヨト イヨト イ

## Instability and starquakes

A spinning down pulsar reaches instability point and collapses (spin up!) into a new stable C and then continues its evolution



Paweł Haensel (CAMK)

Track in M - J plane

## Back bending and pulsar timing

Isolated pulsar energy balance  $\dot{M}c^2 = -\kappa\Omega^{\alpha}$ Standard model: I = I(0) = const.. However, in the phase transition epoch  $I(\Omega)$  is **crucial**. Standard approximation: overestimates spindown rate and underestimates age.

Example: 10 ms pulsar observed at time = 0. Evolution back in time using I = const. can be misleading if a phase transition region was crossed huge values of  $n = \Omega \ddot{\Omega} / \dot{\Omega}^2 \longrightarrow$ 



Period evolution in time

## $\Delta f$ , $\Delta R$ , and $\Delta E$ in starquakes

$$\mathcal{C}_{\mathrm{i}} \longrightarrow \mathcal{C}_{\mathrm{f}}$$
 conditions  $M_{\mathrm{b,i}} = M_{\mathrm{b,f}}$ ,  $J_i = J_{\mathrm{f}}$ 

Energy release  $\Delta E = -\Delta M c^2$ Characteristic dependence on  $J_{\rm i}$ 

Very weak dependence of  $\Delta E$  on  $J_i$ 

Therefore  $\Delta E$  can be calculated using 1-D code for non-rotating stars and this gives excellent prediction (within better than 20%) even for high  $J_i$ ! No need for 2-D to get reliable estimate.



### Metastability and two cases of corequakes

non-rotating stars: Haensel, Zdunik, Schaeffer (1986, 87)

Two cases of starquakes

(1) weak and moderate 1st order phase transitions  $\rho_{\rm S}/\rho_{\rm N} < \frac{3}{2} + P_0/\rho_{\rm N}c^2$ ; starquake due to nucleation of S phase in a metastable core of N phase (2) strong 1st order phase transitions  $\rho_{\rm S}/\rho_{\rm N} > \frac{3}{2} + P_0/\rho_{\rm N}c^2$  - non-rotating configurations with  $P_{\rm c} > P_0$  with small S cores are unstable (collapse)

rotating stars: Zdunik, Bejger, Haensel, Gourgoulhon(2006)



## $\Delta E$ independent of J !

Overcompression in the N-star center  $\delta\overline{P}\equiv(P_{\rm c}-P_0)/P_0.$  Starquake triggered for  $P_{\rm c}=P_{\rm nucl}$ 

Zdunik, Bejger, Haensel, Gourgoulhon (2006)



Energy release independent of  $J_i$  also for strong 1st order phase transition. 1-D static calculations are sufficient to get energy release for rotating stars Zdunik, Bejger, Haensel, Gourgoulhon (2006)