XMM-Newton Observations of the Isolated Neutron Star 1RXS J214303.7+065419 / RBS 1774

Mark Cropper, Silvia Zane Roberto Turolla Luca Zampieri Matteo Chieregato Jeremy Drake Aldo Treves - MSSL/UCL

- Univ Padova
- INAF Padova
- Univ dell'Insubria, Zurich Univ
- SAO Harvard
- Univ dell'Insubria

Contents

- Background
- Spectral analysis
- Timing analysis
- Discussion

[update of the work reported in Zane et al. (2005) ApJ, 627, 397]

Background

- RBS1774 (1RXS214303.7+065419) is the seventh X-ray emitting, dim, isolated neutron star (XDINS), medium age (~10⁵-10⁶ year)
- X-rays from XDINS are from the neutron star surface: important for
 - examining thermal and magnetic surface properties
 - tracking evolutionary status of the neutron star
- Discovered by Zampieri et al (2001) in ROSAT PSPC pointing of BL Lac MSS 2143.4+0704; also seen in RASS
- ROSAT data indicated a soft X-ray spectrum to which a blackbody of kT~92 eV was an acceptable fit
- No plausible optical counterpart seen down to R~23 \Rightarrow X-ray:optical flux ratio of >10³

Observations of RBS1774

- Observations were taken on 2004 May 31 with *XMM-Newton* in small window mode, with thin filter, and with 23 sec total exposure time after GTI selection; standard reductions with SASv6.0.0 for off-axis position
- New source position corrects the previous uncertain *Rosat* positions with a 90% uncertainty radius of 3 arcsec (α 21^h43^m03.3^s, δ +6°54′17″)

Spectral Analysis: EPIC data

• simultaneous pn+MOS fit to cold absorber + blackbody:

Spectral Analysis: EPIC data

 Addition of an edge at 0.7keV removes residuals: significantly improved fit

Spectral Analysis: model fits

• For completeness: model fit parameters

Model	$n_{\rm H} (10^{20} { m cm}^{-2})$	kT_{bb}^{∞} (eV)	$E_{ m edge/line}$ (eV)	$ au_{edge}; au_{line}$	$\sigma_{ m line}$ (eV)	$f_{\rm X}^{\rm a}$ (ergs cm ⁻² s ⁻¹)	$\chi^2/{ m dof}$		
bb bb + absorption edge bb + Gaussian line	$\begin{array}{r} 3.65\substack{+0.16\\-0.13}\\ 3.60\substack{+0.21\\-0.16}\\ 3.74\substack{+0.14\\-0.10}\end{array}$	$101.4^{+0.5}_{-0.6} \\ 104.0^{+0.6}_{-0.7} \\ 102.1^{+0.5}_{-0.3}$	$ 694^{+5}_{-11} \\ 754^{+8}_{-9} $	$0.25^{+0.03}_{-0.03}\\4.8^{+1.0}_{-0.5}$	27^{+15}_{-8}	$\begin{array}{l} 5.16\times 10^{-12}\\ 5.07\times 10^{-12}\\ 5.20\times 10^{-12}\end{array}$	1.36 1.17 1.20		

MODEL-FIT PARAMETERS: BLACKBODY (bb) MODEL

- No improvements with a power law or 2nd blackbody
- Also fits to atmospheric models (NSA in XSPEC): fits worse

$B (10^{12} \text{ G})$	$n_{\rm H} (10^{20} {\rm ~cm^{-2}})$	kT^{∞} (eV)	χ^2 /dof
0	$8.4^{+0.3}_{-0.2}$	$29.8^{+0.3}_{-0.3}$	1.94
1	$8.3_{-0.2}^{+0.2}$	$47.3^{+0.5}_{-0.4}$	1.99
10	$8.6^{+0.1}_{-0.2}$	$50.0_{-0.4}^{+0.4}$	2.19

≜UCL

Spectral Analysis: RGS data

• Source faint in RGS, but still sufficient for spectral analysis

Spectral Analysis: summary

- Main features of spectrum are clear:
 - single blackbody spectrum with kT~102 eV most favoured by fits
 - no power law component
- Situation unclear with respect to line features:
 - EPIC fits require absorption edge/line at 0.7 keV (statistically significant) and no line at 0.4 keV
 - RGS indicates absorption edge/line at 0.4 keV (apparently statistically significant) and no line at 0.7 keV
- At these low RGS countrates calibration is not likely to be the problem
- No calibration features at EPIC 0.7 keV seen in other good S/N spectra
- For the present, line features in RBS1774 should be regarded as

unconfirmed until longer RGS observations are made

Timing Analysis

- EPIC pn and MOS event files were analysed using a maximum likelihood periodogram technique (Zane et al 2002, Cropper et al 2004).
- Periods searched from 10 ksec to 30 msec
- Period found at 9.437 sec, 6σ above the noise; evident independently within both pn and MOS data with consistent phasing
- Including random probability of peaks in the 1-1000 sec interval, the peak is significant at 4σ
- Semi-amplitude of variation is 0.036±0.006 (*i.e.* ~4%) from sinusoidal fits to the data folded on the 9.437 period

Timing Analysis: periodogram and folded data

Discussion: spectral features

- We interpreted the 0.7 keV line as either
 - proton cyclotron line with $B \sim 1.4 \times 10^{14}$ G
 - H ionisation edge (Ho et al 2003) or He bound-bound transitions (Sanwal et al 2002, Zavlin et al 2004) again giving $B \sim \text{few x}10^{14} \text{ G or}$
 - electron cyclotron line giving $B \sim 7.5 \times 10^{10}$ G
 - atomic transition of a mid-Z H-like ion (eg CVI, NVII, OVIII) giving $B \sim 10^{11}$ G
- If this line is real (or if RGS, halve for 0.4 keV), then fields are either
 - magnetar like (similar to XDINS RX J1605.3+3249 & RX J0806.4-4123)
 - or less than those in normal radio pulsars

Discussion: comparison with other XDINS

- XDINS all have $kT \sim 50-100$ eV, periods (if any) of ~ 10 sec
- Most have lines <1 keV (<500 eV without RBS1774)

Source	kT_{bb}^{∞} (eV)	$n_{\rm H} (10^{20} {\rm ~cm^{-2}})$	E _{line} (eV)	P (s)	Semiamplitude ^a	Reference
RX J1856-3754	56.7	0.18	No	No	No	1
RX J0720-3125	85.2	1.38	270	8.39	11%	2
RX J1605.3+3249	94.1	0.68	493	No	No	3
RX J1308.6+2127	85.8	4.10	290	10.31	18%	4
RX J0420-5022	44.9	1.02	329	3.45	13%	5
RX J0806-4123	95.6	0.41	460	11.37	6%	5
RBS 1774	101.4	3.65	700	9.44	4%	6

^a Semiamplitude of the folded light curve.

REFERENCES.—(1) Burwitz et al. 2003; (2) Haberl et al. 2004a; (3) Van Kerkwjik et al. 2004; (4) Haberl et al. 2003; (5) Haberl et al. 2004b

c.f. also eg Haberl (2005)

Discussion: cooling age

- RBS1774 is therefore the hottest of the XDINS
- Cooling age from cooling models with proton superfluidity (Yakovlev et al 2004) is

Discussion: magnetic field decay age

• If RBS1774 has a high magnetic field, its age τ_d can also be computed from the field decay time using the equations in Cropper et al (2004)

$$B_{0} = \left(P\dot{P}\right)^{1/2} \left[b^{\frac{\alpha-2}{2}} - \frac{\alpha-2}{2}\frac{a}{b}\left(P\dot{P}\right)^{\frac{\alpha-2}{2}}\left(P^{2} - P_{o}^{2}\right)\right]^{\frac{1}{2-\alpha}}$$
$$\tau_{d} = (a\alpha B_{0}^{\alpha})^{-1} \left\{ \left[1 - \frac{2-\alpha}{2}\frac{a}{bB_{0}^{2-\alpha}}\left(P^{2} - P_{o}^{2}\right)\right]^{\frac{\alpha}{\alpha-2}} - 1 \right\}$$

where $\dot{P} \sim 10^{-12} \text{ s} \text{ s}^{-1}$ can be estimated from dipole radiation and the current spin period of 9.437 sec, α and a depend on the model (Hall cascade and ambipolar diffusion – Colpi et al 2000) and $b\sim3$

- If the field decay is by
 - Hall cascade then $\tau_d \sim 10^4 \text{ yr}$
 - Ambipolar diffusion then $\tau_d \sim 10^5$ yr
- Field decay and thermal ages are consistent for $M_{\rm NS}$ = 1.35-1.5 M_{\odot}

Summary

- From *XMM-Newton* observations, RBS1774 has a 0.1 keV thermal spectrum and a spin period of 9.437 sec with a low amplitude (4%) sinusoidal X-ray variation
- A power-law component can be excluded. Neutron star atmosphere models (as in Zavlin et al 1996) do not provide good fits.
- The EPIC data require a line/edge at 0.7 keV; however this is not seen in the RGS data, which instead has a feature at 0.4 keV: it is not clear how to resolve this inconsistency.
- Cooling models predict ages of 10^5 yr for $1.35 M_{\odot} 10^5$ yr for $1.6 M_{\odot}$
- If the magnetic field is magnetar-like (as probably required by either line), then the age from field decay is $10^4 10^5$ yr; masses are consistent with the cooling age for $1.35 1.5 M_{\odot}$

