Radio Emission from AXP and XDINS

Malofeev V., Malov O., Teplykh D.

Pushchino Radio Astronomy Observatory, Astro Space Center, P.N. Lebedev Physical Institute

? ï∕ï	Èñòî÷íèê	D, ñ	D'	lg <i>L_x</i> (?∂ã/ñ	lg Ë (?∂ã/ñ)	
AXP						
1	1E1048. 1 5937	6.45	12.2 [×] 10 ⁻¹¹	34.30	33.51	
2	1E2259+586	6.98	7.3× 10 ⁻¹³	34.90	31.93	
3	4U0142+61	8.69	3 × 10 ⁻¹²	34.90	32.26	
4	RXSJ1708494009	11.00	3 × 10 ⁻¹¹	35.95	32.95	
5	1E1841045	11.77	4.7× 10 ⁻¹¹	35.48	33.06	
6	AXJ1845.60258	6.97		34.70		
7	07203125	8.39		31.48		
8	XTEJ1810197	5.54	1 × 10 ⁻¹¹	~36	33.6	
XDINS						
1	RX 1856	-				
2	RX 0720	8.39				
3	1RXSJ130848.6+2127	10.31	(0.7- 2.0) [×] 10 ⁻¹¹	32.61	33.30-33.7	
4	RBS 1556	-				
5	RX 0806	11.37				
6	RX 0420	3.45				
7	1 RXS J214303.7+0654	9.44		(28-31)	(31.0)	

Observations

◆ LPA: 111.5 ± 1.5 MHz, 3.3 m / cos δ , $A_{ef} \approx 20\ 000\ m^2$ Cross Type Radio Telescope: 87 MHz, 62 MHz, 42 MHz $15 \text{ m} / \cos \delta$, $A_{ef} \approx 5 - 8 \times 10^3 \text{ m}^2$ • **Receivers**: 64×20 kHz, $\Delta t = 25.6$ ms, 51.1 ms, 61.9 ms 1E 2259+586 **Recording of 53 periods or 26 double periods** J1308+21 and J2143+06 **Recording of 20 periods or 10 double periods**

1E2259+586

<u>111.23 MHz</u> Malofeev et al 2004,2005

Pulse profile obtained when the observing window equals twice the apparent period (p = 6.978 s). The summing of 12 days was made with the superposition of visible pulses at the phase ~ 0.58 (red arrow). Second pulse shows up at the phase 1.58 (blue arrow). The mean profile for one period obtained by the folding of data (lower).

Examples of power Fourier spectrums of two pulsars at frequency 111.5 MHz

- a) Strong pulsar B1133+16
- b) Pulsar B0320+39

Amplitude Spectrum 1E2259+586

1E2259+586 87.54 MHz

05.10.2002 80 periods

32 ch x 20 kHz

Pulse profile at 87.5 MHz

The search signal – Ο to – noise ratio (upper) and pulse width (lower) as a function of dispersion measure at 111.23 MHz

Kaspi et al. 1999

1 RXS J130848.6+212708

Haberl et al. A&A (2003); astro-ph/0304088 v1 4 Apr 2003

Pulse profile of RBS1223 in the 0.12-0.5 keV (soft) and 0.5-1.0 keV (hard) energy bands, together with the ratio hard/soft, obtained from the EPIC-pn data of the Jan. 2003 observation.

Amplitude Spectrum of J1308+21

<u>6. 05. 2003</u>

J1308+21 <u>111.23 MHz</u>

Sum of 4 days (18, 20, 21, 23 January 2004)

25 periods

Pulse profile obtained when the observing window equals twice the apparent pulsar period (p = 10.32 s). This profile was obtained by the integration of 25 independent individual pulses only (upper) and the mean profile for one period (lower) obtained by the folding of data.

J1308+21 <u>87.70 MHz</u>

J1308+21 61.80 MHz

J1308+21 42.31 MHz

March 2003

sum of 4 days 32 x 20 kHz N = 206 S/n = 7

The search signal – to – noise ratio (upper) and pulse width (lower) as a function of dispersion measure at 111.23 MHz

1RXS J2143.7+065419

<u>111.23 MHz</u> Malofeev et al, Atel #798, 2006

<u>16.02.2006</u>

10 periods

S/n = 7

Pulse profile obtained by the integration of 20 periods

J2143+06 111.23 MHz

Sum of 4 days

(14,16,21,24 Feb.2006)

38 periods

76 periods S/n = 10

J2143+06 <u>111.23 MHz</u>

Sum of 7 days

(7,8,9,11 Nov., 2,4,7 Dec. 2005)

68 periods

136 periods S/n = 10

J2143+06

Interpulse

<u>Sum of 4 days</u> (16,17,22,27 Nov.2005)

40 periods

J2143+06 111.23 MHz

Sum of 23 days

450 periods

S/n = 11

Amplitude spectrum of J2143+06

3.05.2003

Amplitude spectrum of J2143+06

Sum of 11 days

J2143+06 <u>111.23 MFIz</u>

Outbursts 18.10.2005

10 periods x 2

Sum of 20 periods

Arrival time residuals for 1RXS J2143.7+065419

Parameters of pulsars at 111 MHz

	1E 2259+586	1 RXS J130848.6+	1 RXS J214303.7+0
	(Fahlman, Gregory 1981)	(Hambaryan et al. 2002)	(Zane et al. 2005)
MJD Range	51 244 - 52 749	52 300 - 52 743	53657.7-53799.3
	Gavriil and Kaspi, 2002	Hambaryan et al. 2002	(Zane et al. 2005)
	(50 356 - 52 016)	(50 824 - 51 719)	
N TOA	89	21	13
	(67)	(2?)	
p (s)	6.97894846 (6)	10.31433994(2)	9.43707(10)
	(6.978948446 (4))	(10.314232 (14))	(9.437)
$p'(10^{3} s/s)$	4.87(2)	129 (1)	- 15 (22)
	(4.8430 (8))	(70 - 200)	
Epoch MJD	51995.5827	51719.5	53657.7
	(51995.5827)	(51719.949)	
DM (cm ³ pc)	79 (4)	5.7(5)	8(5)
D (kpc)	3.6	0.25	0.4
	(3.5 - 4.5)	(0.1 - 1.5)	(0,28)
S (mJy)	35 á = 25	50 á = 20	60 á = 25
L (erg/s)	$3^{\cdot} 10^{28} (^{\alpha} = 2.5)$	3 [·] 10 ²⁶ (^α = 2.5)	9 \cdot 10 26 (lpha = 2.5)
	^α >2 (S ₆₀₀ <2.3 mJy, Lorimer et al.1998)		
$W_{1/2}(ms)$	120 (20) ~ 1.7%	140 (20) ~ 1.4%	990 (60) ~ 10%
	~27%	~25%	~ 50%
B (G)	1.2 [·] 10 ¹⁴	5.2 [·] 10 ¹⁴	
		(3.5 - 6.5 [·] 10 ¹⁴)	10 ¹¹ , 10 ¹⁴
T (year)	2.2 [·] 10 ⁵	6.3 [·] 10 ³	
		$(6 - 12 \cdot 10^3)$	

Conclusions

There is radio emission from AXP and XDINS at low radio frequencies.

The discovery of new radio pulsar with p = 6.7 s and p' = 1.3 ·10⁻¹² s/s (McLaughlin et al. 2003) together with the detection of radio emission from AXP, SGR (*Shitov et al.* 2000) and XDINS gives a reason to revise either the radio emission mechanisms in the "magnetar" model or the "magnetar" model itself.