Heating old neutron stars

Andreas Reisenegger Pontificia Universidad Católica de Chile (UC) with Rodrigo Fernández formerly UC undergrad., now PhD student @ U. of Toronto Paula Jofré formerly UC undergrad., admitted to International Max Planck Research School, Garching

Heating neutron star matter by weak interactions

- Chemical ("beta") equilibrium sets relative number densities of particles (*n*, *p*, *e*, ...) at different pressures $n \leftrightarrow p + (e, \mu) \Rightarrow \mu_n = \mu_p + \mu_e$
- Compressing or expanding a fluid element perturbs equilibrium $e.g., \mu_n > \mu_p + \mu_e$
- Non-equilibrium reactions tend to restore equilibrium $n \rightarrow p + e + \overline{v_e}$
- "Chemical" energy released as neutrinos & "heat"

Possible forcing mechanisms

- <u>Neutron star oscillations</u> (bulk viscosity):
 SGR flare oscillations, r-modes Not promising
- <u>Accretion</u>: effect overwhelmed by external & crustal heat release – No.
- <u>dΩ/dt</u>: "Rotochemical heating" Yes
- <u>dG/dt</u>: "Gravitochemical heating" !!!???

"Rotochemical heating"

NS spin-down (decreasing centrifugal support)

- \Rightarrow progressive density increase
- \Rightarrow chemical imbalance

$$\eta \equiv \mu_n - \mu_p - \mu_{e,\mu} > 0$$

 \Rightarrow non-equilibrium reactions

$$n \to p + (e, \mu) + \overline{v}_{e,\mu}$$

- \Rightarrow internal heating
- \Rightarrow possibly detectable thermal emission

Reisenegger 1995, 1997; <u>Fernández & Reisenegger 2005</u>; Reisenegger et al. 2006, submitted (all ApJ)

Fast vs. slow processes

"Direct Urca"
$$n \rightarrow p + e + \overline{v}$$

"Modified Urca"

 $n+n \rightarrow n+p+e+\nu$

Fast

But not allowed if proton density too low.

Dominant process if direct Urca not allowed, but:

Much slower

Standard neutron star cooling:

- 1) No thermal emission after 10 Myr.
- 2) Finite diffusion time matters only during first few 100 yr.
- 3) Cooling of young neutron stars in rough agreement with slow cooling models (see D. Page's talk)

Yakovlev & Pethick 2004

Thermo-chemical evolution

Variables:

•Chemical imbalances $\eta_{e,\mu} \equiv \mu_n - \mu_p - \mu_{e,\mu}$ •Internal temperature *T Both are uniform in diffusive equilibrium.*

$d\eta$ _	(increase through)_	(decrease through)
dt	compression	$\left(n \leftrightarrow p + e \right)$
dT_{-}	(increase through)	(decrease through)
dt	$\left(n \leftrightarrow p + e \right)^{-}$	$\langle radiation: \gamma, \nu \rangle$

Magnetic dipole spin-down (n=3)MSP evolutionMagnetic dipole spin-down (n=3)with $P_0 = 1 ms; B = 10^8 G;$ modified Urca

Insensitivity to initial temperature

For a given NS model, MSP temperatures can be predicted uniquely from the measured spin-down rate.

The nearest MSP: PSR J0437-4715 HST-STIS far-UV observation (1150-1700 Å) *Kargaltsev, Pavlov, & Romani 2004*

PSR J0437-4715: Predictions vs. observation

Old, <u>classical</u> pulsars: sensitivity to initial rotation rate

dG/dt ?

- Dirac (1937): constants of nature may depend on cosmological time.
- Extensions to GR (Brans & Dicke 1961) supported by string theory
- Present cosmology: excellent fits, dark mysteries, speculations: "Brane worlds", curled-up extra dimensions, effective gravitational constant
- Observational claims for variations of
 - $\alpha_{\rm EM} \equiv e^2/\hbar c \text{ (Webb et al. 2001; disputed)}$
 - $m_{\rm p}/m_{\rm e}$ (Reinhold et al. 2006)

 \rightarrow See how NSs constrain d/dt of $\alpha_{\rm G} \equiv Gm_{\rm n}^2/\hbar c$

Previous constraints on dG/dt

Method	G'/G [yr^(-1)]	Timespan[yr]	Reference
Solar System planet and	1E-12	24	Williams
satellite orbits			et al (1996)
Binary pulsar orbit	5E-12	10	Kaspi et al (1994)
Rotation of isolated PSRs	6E-11	10	Goldman (1990)
(var. moment of inertia)			
White dwarf oscillations	3E-10	20	Benvenuto et
			al. (2004)
Paleontology:	2E-11	4E+09	Eichendorf &
Earth's surface temp.			Reinhardt (1977)
vs. prehistoric fauna			
Binary pulsar masses	2E-12	2E+09	Thorsett (1996)
(Chandrasekhar mass at			
time of formation)			
Helioseismology	2E-12	5E+09	Guenther et
(Solar evolution models)			al. (1998)
Globular clusters	7E-12	1E+10	Degl'Innocenti
(isochrones vs. age of the			et al. (1996)
Universe)			
CMB temperature	1E-13	1E+10	Nagata
fluctuations (WMAP			et al. (2004)
vs. specific models)			
Big Bang Nucleosynthesis	2E-13	1E+10	Copi
(abundances of D, He, Li)			et al. (2004)

Gravitochemical heating

dG/dt (increasing/decreasing gravity) \Rightarrow density increase/decrease \Rightarrow chemical imbalance $\eta \equiv \mu_n - \mu_p - \mu_{e,\mu} \neq 0$ \Rightarrow non-equilibrium reactions $n \leftrightarrow p + (e, \mu)$ \Rightarrow internal heating \Rightarrow possibly detectable thermal emission Paula Jofré, undergraduate thesis Jofré, Reisenegger, & Fernández, paper in preparation

Constraint from PSR J0437-4715:

$$\dot{G} / G < 4 \cdot 10^{-12} \,\mathrm{yr}^{-1}$$

...<u>if</u> only modified Urca processes are allowed, <u>and</u> the star has reached its stationary state.

Required time:
$$t_{eq} \approx 90 \text{ Myr}$$

Compare to age estimates: I_{s}

$$t_{\rm spin-down} = 4.9 \,\rm Gyr$$

 $t_{\rm WD \, cooling} \approx 2.5 - 5.3 \,\rm Gyr$

(Hansen & Phinney 1998)

Now:

Method	G'/G [yr^(-1)]	Time [yr]	Reference
Solar System planet and	1E-12	24	Williams
satellite orbits			et al (1996)
Binary pulsar orbit	5E-12	10	Kaspi et al (1994)
Rotation of isolated PSRs	6E-11	10	Goldman (1990)
(var. moment of inertia)			
White dwarf oscillations	3E-10	20	Benvenuto et
			al. (2004)
Gravitochemical heating	2E-10	1E+05	Jofré et al.
of NSs (PSR J0437-4715)			(to be published)
MOST GENERAL			
Gravitochemical heating	4E-12	9E+07	Jofré et al.
of NSs (PSR J0437-4715)			(to be published)
ONLY MODIFIED URCA			
Paleontology:	2E-11	4E+09	Eichendorf &
Earth's surface temp.			Reinhardt (1977)
vs. prehistoric fauna			
Binary pulsar masses	2E-12	2E+09	Thorsett (1996)
(Chandrasekhar mass at			
time of formation)			
Helioseismology	2E-12	5E+09	Guenther et
(Solar evolution models)			al. (1998)
Globular clusters	7E-12	1E+10	Degl'Innocenti
(isochrones vs. age of the			et al. (1996)
Universe)			
CMB temperature	1E-13	1E+10	Nagata
fluctuations (WMAP			et al. (2004)
vs. specific models)			
Big Bang Nucleosynthesis	2E-13	1E+10	Copi
(abundances of D, He, Li)			et al. (2004)

Main uncertainties

- Atmospheric model:
 - Deviations from blackbody
 - H atmosphere underpredicts Rayleigh-Jeans tail
- Neutrino emission mechanism/rate:
 - Slow (mod. Urca) vs. fast (direct Urca, others)
 - <u>Cooper pairing</u> (superfluidity): R. 1997; Villain & Haensel 2005; Flores & R., in prep.

Not important (because stationary state):

- Heat capacity: steady state
- Heat transport through crust

Conclusions

- *Rotochemical heating* <u>must</u> occur in all neutron stars with decreasing rotation rates
- *Gravitochemical heating* happens if $dG/dt \neq 0$
- Both lead to a <u>stationary state</u> of nearly constant temperature that can be probed with old enough pulsars (e.g., MSPs)
- Observed UV emission of PSR J0437-4715 may be due to rotochemical heating
- The same emission can be used to constrain |dG/dt|:
 - competitive with best existing constraints <u>if</u> fast cooling processes could be ruled out
- Sensitive UV observations of other nearby, <u>old</u> neutron stars of different rotation rates are useful to constrain both mechanisms
- Superfluid effects being calculated