

The pulsars among the Magnificent Seven

Frank Haberl Max-Planck-Institut für extraterrestrische Physik (MPE), Garching

- The discovery of thermal, radio quiet isolated neutron stars
- New XMM-Newton and Chandra observations
 - Magnetic field estimates
 - Spin period history + Spectral absorption features
 - Multiple absorption lines Cyclotron harmonics?
 - Spectral variations
 - With pulse phase
 - On long-term time scales
 - Properties of the magnetic poles
 - Precession The case of RX J0720.4-3125

Isolated Neutron Stars: from the Surface to the Interior

April 24-28, 2006 London (UK)

Thermal, radio-quiet isolated neutron stars

- Soft X-ray sources in ROSAT survey
- Blackbody-like X-ray spectra, NO non-thermal hard emission
- Low absorption ~10²⁰ H cm⁻², nearby (parallax for RX J1856.5-3754)
- Luminosity ~10³¹ erg s⁻¹ (X-ray dim isolated neutron stars)
- Constant X-ray flux on time scales of years
- No obvious association with SNR
- No radio emission (but: RBS1223, RBS1774: talk by Malofeev)
- Optically faint
- Some (all?) are X-ray pulsars (3.45 11.37 s)

best candidates for "genuine" INSs with undisturbed emission from stellar surface

Object	kT/eV	P/s	Optical	
RX J0420.0-5022	44	3.45	B = 26.6	
RX J0720.4–3125	85-95	8.39	B = 26.6	PM = 97 mas/y
RX J0806.4-4123	96	11.37	B > 24	
RBS 1223 (*)	80-92	10.31	$m_{50ccd} = 28.6$	
RX J1605.3+3249	96	6.88?	B = 27.2	PM = 145 mas/y
RX J1856.5–3754	62	_	V = 25.7	PM = 332 mas/y
RBS 1774 (**)	102	9.44	B > 26 (see poster	· A7)

(*) 1RXS J130848.6+212708 (**) 1RXS J214303.7+065419

Soft, thermal X-ray spectra

XMM-Newton follow-up: absorption features

Evidence for multiple lines:

RX J1605.3+3249: Evidence for three lines

RX J1605.3+3249: Three absorption lines with regular energy spacing

Absorbed line fluxes:

Line energies:

 $N_1: N_2: N_3 \sim 25: 5: 1$ (common line σ = 87 eV)

Proton cyclotron absorption: the deepest line ? In addition atomic line transitions ? Pure hydrogen ruled out?

More multiple lines ?

RBS1223: Evidence for lines at 230 eV and at 460 eV (see poster B22, Schwope et al.)

RX J0806.4-4123:

One line: $E_1 = 433 \pm 16 \text{ eV}$ $\sigma_1 = 100 \text{ eV}$ fixed

Two lines: $E_1 = 306 \pm 3 \text{ eV}$ $E_2 = 612 \text{ eV}$ (linked to E_1) $\sigma_1 = \sigma_2 = 139 \pm 6 \text{ eV}$ $N_1/N_2 = 16.6$

X-ray pulsations

Period history: RX J0720.4–3125 and RBS 1223

2001

2000

1998

 $B = 3.4 \cdot 10^{13} G$

10

0

-10

-20

-30

-40

-50

φ–φ_{linear} (cycles)

1999

2002

2003

2004

2005

•**t**_0

CXO/ACIS CXO/HRC

XMM/PN

XMM/MOS

ROSAT/HRI

5.4

2006

Kaplan & van Kerkwijk 2005 ApJ 635, L65

P = 8.39 s $dP/dt = (0.698 \pm 0.002) \cdot 10^{-13} \text{ s s}^{-1}$ $\tau = P/2(dP/dt) = 1.9 \cdot 10^6 \text{ y}$ $B = 2.4 \cdot 10^{13} G$

> Kaplan & van Kerkwijk 2005 ApJ 628, L45

Magnetic fields

- Magnetic dipole braking $\rightarrow B = 3.2 \times 10^{19} (P \times dP/dt)^{1/2}$ Spin-down rate (P, dP/dt) Spin-down luminosity required to power the H α nebula (dE/dt, τ)
- Proton cyclotron absorption \rightarrow B = 1.6 x 10¹¹ E(eV)/(1-2GM/c²R)^{1/2}

Object	P [s]	Semi Ampl.	dP/dt [10 ⁻¹³ ss ⁻¹]	E _{cyc} [eV]	B _{db} [10 ¹³ G]	B _{cyc} [10 ¹³ G]
RX J0420.0–5022	3.45	13%	< 92	?	< 18	
RX J0720.4-3125	8.39	8-15%	0.698(2)	280	2.4	5.6
RX J0806.4-4123	11.37	6%	< 18	430/306 ^{a)}	< 14	8.6/6.1
1RXS J130848.6+212708	10.31	18%	1.120(3)	$300/230^{a}$	3.4	6.0/4.6
RX J1605.3+3249				450/400 ^{b)}		9/8
RX J1856.5–3754				—	~1 ^{c)}	
1RXS J214303.7+065419	9.43	4%	<60 ^{d)}	750	< 24 ^d)	15

a) Spectral fit with single line / two lines

b) With single line / three lines at 400 eV, 600 eV and 800 eV

c) Estimate from Ha nebula assuming that it is powered by magnetic dipole breaking

d) Radio detection: Malofeev et al. 2006, ATEL 798

Spectral variations with pulse phase

RX J0720.4-3125

RX J0420.0-5022 RX J0806.4-4123

Cropper et al. (2001)

Haberl et al. (2005)

Spectral variations with pulse phase: RBS 1223

Two-spot model: $kT_{\infty} = 92 \text{ eV}$ and 84 eV

 $2\Phi \sim 8^{\circ}$ and $\sim 10^{\circ}$

offset $\sim 20^{\circ}$

Long-term spectral changes from RX J0720.4-3125

Increase at short wavelength: temperature increase Decrease at long wavelength: deeper absorption line

Increase in pulsed fraction

Precession of the neutron star? *de Vries et al. (2004)*

RX J0720.4-3125: Spectral variations over 4.5 years

Rev.	kT(eV)	EW(eV)			
•0078	86.6 ± 0.4	-5.02 ± 4.5			
0175	86.5 ± 0.5	$+8.68 \pm 7.7$			
•0533/534	$\textbf{88.3} \pm \textbf{0.3}$	-21.5 ± 2.6			
0711/711	91.3 ± 0.6	-73.7 ± 4.9			
•0815	$\textbf{93.8} \pm \textbf{0.4}$	-72.4 ± 4.7			
•0986	93.5 ± 0.4	-68.3 ± 5.2			
•1060	93.2 ± 0.4	-67.4 ± 4.3			
•1086	92.6 ± 0.4	-67.5 ± 3.5			
• FF mode + thin filter					

common line energy: $280 \pm 6 \text{ eV}$ common line width: $\sigma = 90 \pm 5 \text{ eV}$

Long-term variations over 4.5 years:

Temperature by ~7eV

Absorption line equivalent width by a factor of almost 15

Radius of emission area from 4.4 km to 4.8 km (d=300pc)

But flux is constant within ±2%

RX J1856.5-3754: A ,stable' neutron star

RX J0720.4-3125 longterm spectral variations

RX J0720.4-3125 longterm spectral variations

 $\epsilon = (I_3 - I_1) / I_1 = P_{spin} / P_{prec} \approx 4.10^{-8}$ between that reported from of radio pulsars and Her X-1

RX J0720.4-3125 pulse phase spectral variations

13-05-2000 (rev 0078) 06-11-2002 (rev 0533/534) 22-05-2004 (rev 0815) 0 28-04-2005 (rev 0986) 23-09-2005 (rev 1060) 12-11-2005 (rev 1086) EW (eV) 50 85 90 95 kT (eV)

RX J0720.4-3125: Spectral variations over pulse and precession phase

RX J0720.4-3125: Pulse profile changes

RX J0720.4-3125: A precessing isolated neutron star

See also: Perez-Azorin et al. (2006) astro-ph/0603752

RX J0720.4-3125: A precessing isolated neutron star

Roberto Turolla Cor P. De Vries Silvia Zane (see also her talk) Jacco Fink Mariano Mendez Frank Verbunt

Haberl et al. 2006 A&A in press

Pulsars

high-energy detections

AXP / γ-ray repeaters (magnetars)

Magnificent Seven: circles: P/P diamonds: cyclotron lines

magnetic dipole braking: age = P / $2\dot{P}$, B = $3.2 \times 10^{19} (P\dot{P})^{1/2}$

The Magnificent Seven: Conclusions

- $F_x/F_{opt} > 10^4 \rightarrow$ Isolated neutron stars
- High proper motion \rightarrow Nearby, cooling isolated neutron stars
- $dP/dt + absorption features \rightarrow Magnetic fields 10^{13-14} G$
- Evidence for multiple lines → Proton cyclotron absorption + Atomic line transitions? ,Molecules' ?

Interesting individuals:

RX J0720.4-3125: Pulsar Absorption feature Precession

RX J1856.4-3754: No pulsations No absorption feature Seems to be a special case among the seven (viewing geometry?)