Magnetars in Supernova Remnants

&

Magnetars Formation

Jacco Vink Astronomical Institute Utrecht University

Magnetars in Supernova Remnants & Magnetar Formation Jacco Vink

Vink&Kuiper astro-ph/0604187 Isolated NSs, London, April, 2006

The central question:

What is the origin of the high magnetic fields of magnetars?

Magnetars in Supernova Remnants & Magnetar Formation Jacco Vink

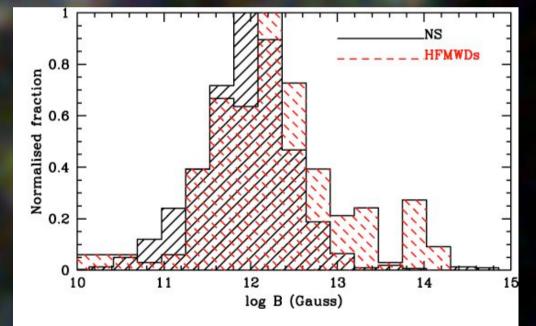
Two possible formation scenarios

1. progenitor star has high magnetic field (fossil field hypothesis)

- 2. proto-neutron star is rapidly spinning
 - P< 3 ms (~ 3 ms proto NS convective overturn time), convective dynamo → growth of magnetic field to ~10¹⁵G (Duncan & Thompson, 1992)
 C.f.: typical isolated neutron stars have B ~ 10¹² G & P_i ~ 10 ms

Problems for rapid spinning scenario:

 If magnetars are from massive stars stellar winds may have removed most angular momentum
 Simulations don't show enough differential rotation (Fryer & Warren 2004)


Magnetars in Supernova Remnants & Magnetar Formation Jacco Vink

The Fossil Field Hypothesis

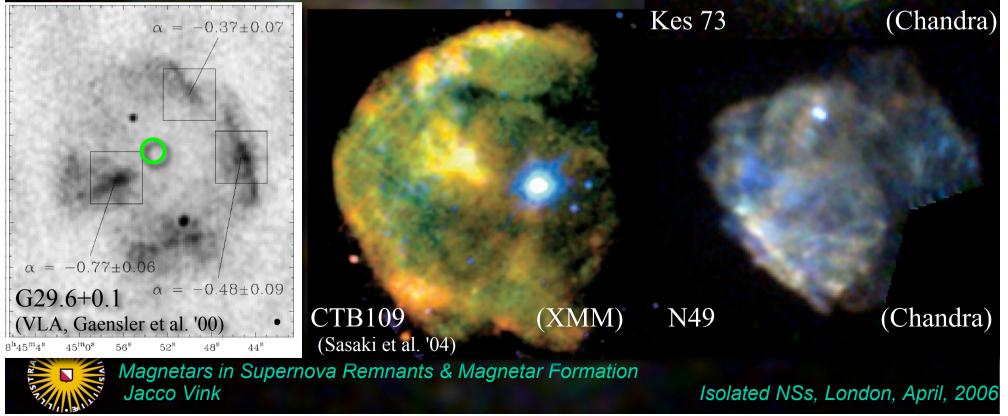
•Similar distributions B-fields of White Dwarfs and Neutron stars (Ferrario & Wikramsinghe 2006)

- F&W: B-field variation reflects variation in the ISM
- High B-field WD/NSs should have slow rotation (rotational coupling of wind/core through B-field)
- But: giant flare of SGR1806 suggests even higher internal field:

 $B_{int} > 10^{16}G$ (e.g. Stella et al. 2006)

Magnetars in Supernova Remnants & Magnetar Formation Jacco Vink

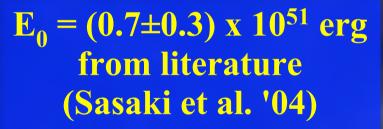
Implications of ms proto-neutron stars (c.f. Duncan&C.Thompson '92, T.Thompson et al. '04, Allen&Horvath '04)

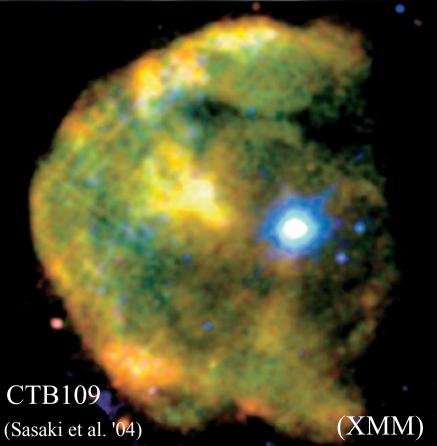

• Dynamo results in magnetars fields on time scales of $\tau_d < 10 \text{ s}$ • B~10¹⁵G magnetic breaking $\tau_B < 400 \text{ s} (10^{15} \text{ G/B})^2 (\text{P/1ms})^2$ (upper limit, as propellor effect gives more rapid slow down) • Short time scale suggests spin-down energy absorbed by supernova • For P ~ 1 ms, rotational energy $E_{rot} ~ 3x10^{52} \text{ erg}$ • If all E_{rot} converted to magnetic energy: $\langle B_{NS} \rangle \sim 3x10^{17} \text{ G}$ • If $\langle B_{NS} \rangle \sim 10^{15-16} \text{ G}$, magnetars may power *hypernovae* (T. Thompson et al. 2004)

Can be tested with X-ray data of supernova remnants!

Association of SNRs and magnetars

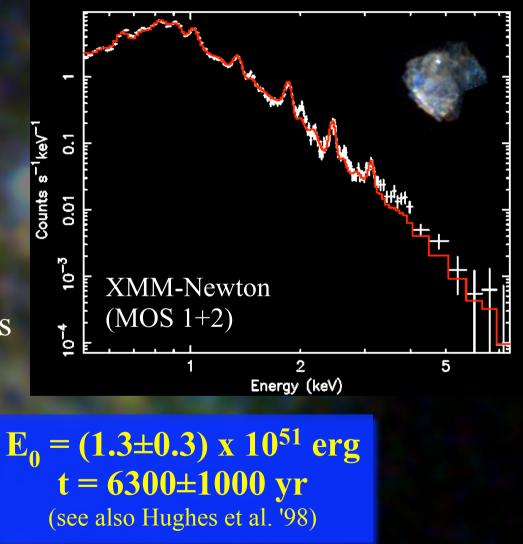
- 8 AXPs/4 SGRs known
- 1 SGR associated with supernova remnant:
 - N49/SGR0526-66 (LMC)
- 3 AXPs associated with SNRs:
 - Kes 73/1E1841-045 (~ 7 kpc)
 - CTB109/1E2259+586 (~3 kpc)
 - G29.6+0.1/AX J1845.0-0258 (~3 kpc)


Deriving the explosion energy


- At late times evolution is assumed to be self-similar (Sedov): r⁵ = 2.02 E_k t²/ρ₀, v_s = 2/5 r/t
 Density low → time dependent ionization (NEI) → n_e t
 From X-ray data: n_e t, kT (= 3/16 <m>v_s²), emission measure (∫n_en_HdV), and radius Sufficient to determine energy, age, density
 - (e.g. Hamilton et al. '83, Jansen&Kaastra '93, Borkowski et al.'01)
- Some redundancy from observations, e.g. age: t=2/5 r/v, or n_e^{-1} t
- Potential caveat: kT (electrons) $\neq kT$ (protons)
- However, equilibration is also dependent on n_e^{t} (incorporated in some spectral mode codes)
- Spectral codes: XSPEC (Hamilton/Borkowski), SPEX (Kaastra, Mewe)
 Method used by e.g. Hughes et al. '98 for LMC SNRs: E = 0.5-7 foe

CTB109

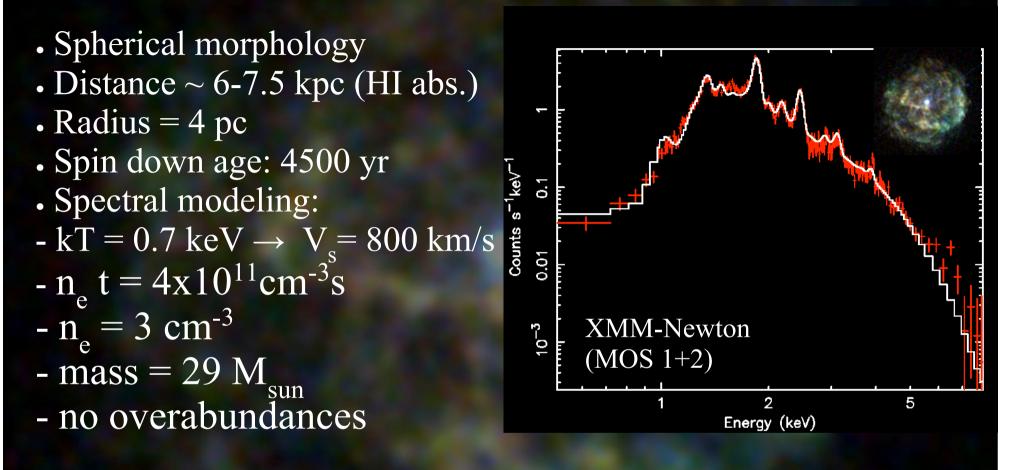
CTB 109 (1E2259+586): complex morphology
AXP showed SGR-like burst
Very long spindown age: 220 kyr



Magnetars in Supernova Remnants & Magnetar ⊢ormation Jacco Vink

N49/SGR 0526-66

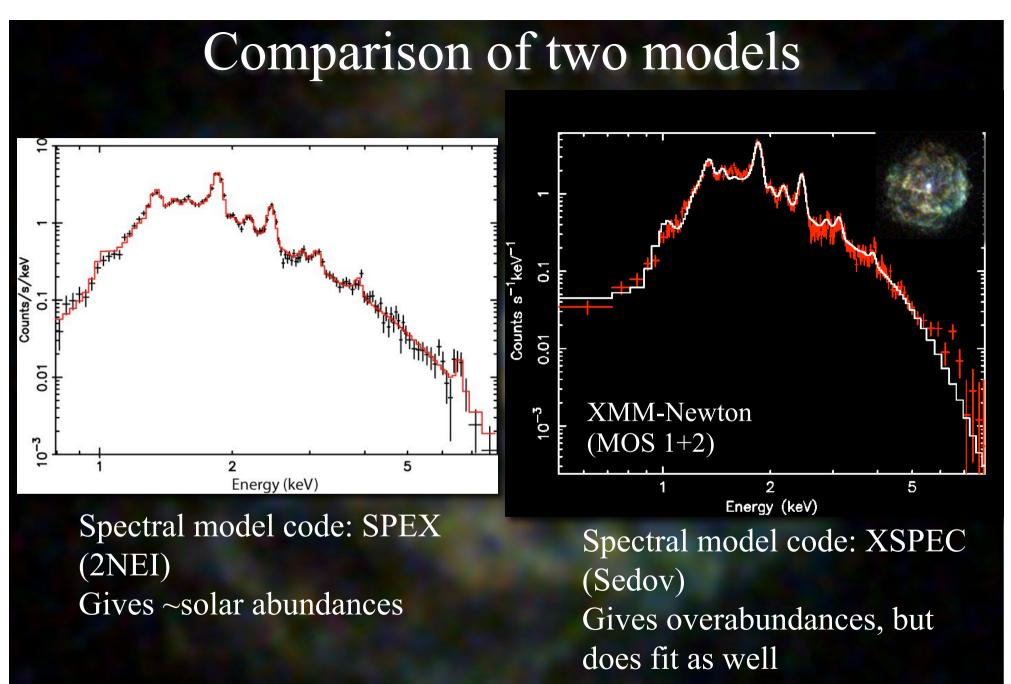
Non-spherical, SNR-cloud interaction


- (e.g. Park et al. '03)
- Distance ~ 50 kpc
- Radius = 10 pc
- Spindown age: 1900 yr
- Connection SGR/SNR requires ~1000 km/s kick (Gaensler et al '01)
- Spectral modeling indicates:
- kT = 0.5 keV \rightarrow V_s= 700 km/s n_e t = 3x10¹² cm⁻³s
- $-n_{e}^{2} = 3 \text{ cm}^{-3}$
- mass $= 320 M_{sun}$

Magnetars in Supernova Remnants & Magnetar Formation Jacco Vink

Kes 73/1E1841-045

 $E_0 = (0.5\pm0.3) \times 10^{51} \text{ erg}$ t = 1300±200 yr


Magnetars in Supernova Remnants & Magnetar Formation Jacco Vink

Was Kes 73's progenitor a massive star?

- Spectral models give different abundances
- SPEX program gives best fits, but consistent with solar abundances!!
- Not consistent with young SNR with oxygen rich ejecta!!
 (c.f. Cas A, G292+1.8)
- Suggest hydrogen rich envelope, i.e. progenitor MS mass of < 20 M_{sun}
- Suggests not all magnetars come from the most massive stars?
- Contrary to some evidence for SGRs (Gaensler)
- Could there be a difference between AXPs and SGRs?

Model	Kes 73	
	2 NEI	Sedov
$EM(10^{12}cm^{-5})$	26.9 ± 3.1	16.4 ± 1.5
$kT_{\rm e}$ (keV)	0.63 ± 0.06	0.72 ± 0.3
$n_{\rm e}t~(10^{11}{\rm cm}^{-3}{\rm s})$	3.1 ± 0.8	4.6 ± 0.2
$EM_2 (10^{12} cm^{-5})$	2.0 ± 0.5	
kT_{2e} (keV)	2.26 ± 0.35	
$n_{\rm e}t_2 \ (10^{11} {\rm cm}^{-3} {\rm s})$	0.47 ± 0.10	
0	(1)	(1)
Ne	(1)	(1)
Mg	1.13 ± 0.13	1.95 ± 0.15
Si	1.09 ± 0.07	1.7 ± 0.1
S	1.12 ± 0.06	1.6 ± 0.1
Ar	1.02 ± 0.18	1.1 ± 0.1
Ca	1.84 ± 0.42	0.77 ± 0.33
Fe	0.42 ± 0.15	4.3 ± 0.7
$N_{\rm H}~(10^{21}{\rm cm}^{-2})$	27.3 ± 0.6	31.2 ± 0.6
Fit range (keV)	0.8-8.0	0.8-8.0
C-statistic/d.o.f.	186/110	956/468

Magnetars in Supernova Remnants & Magnetar Formation Jacco Vink

Potential Caveats

• Some SNRs in the Sedov phase, but in "ejecta phase" Only issue for Kes 73:

- M rather low (argues against Sedov phase)
- but abundance (sub)solar (against ejecta phase)
- more elaborate models (Truelov&McKee '99) confirm E<0.5 foe
- Strongly non-uniform density structure
- Very efficient cosmic ray acceleration may have drained energy
- Additional energy ejected in form of jet
 - hard to confine jet for a long time
 - no morphological evidence for jet in 3 SNRs
 - jet only seen in Cas A

But...

Caveats apply also to ordinary SNRs, which have similar measured energies

Magnetars in Supernova Remnants & Magnetar Formation Jacco Vink

Cassiopeia A

Chandra/VLA

- Cas A: central compact object is potential magnetar (evidence for big SGR-like?- flare in ±1950, Krause et al '05)
 Not in Sedov phase, but measured shock velocity of 5000 km/s
- Evidence for jet/counter jet, mini GRB? (Vink '03, Hwang et al. '04)
- Energy in jets 1 5×10^{50} erg
- Jets enriched in Si/S, some Fe, no Ne, Mg
- Suggest more efficient burning

$E_0 = (2-2.5) \times 10^{51} \text{ erg}$ t = 330 yr

Magnetars in Supernova Remnants & Magnetar Formation Jacco Vink

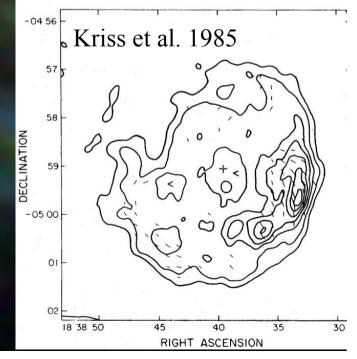
Conclusions

Presence of magnetar does not imply hypernova remnant!

- Magnetar hosts Kes 73, N49 and CTB109 are not more energetic than other supernova remnants
- Typical energies of ~0.5 -2 x 10⁵¹erg, so additional energy from magnetic breaking: <10⁵¹erg
 Equating energy to rotational energy gives:
 - $P_i > 5 (E/10^{51})^{1/2} ms$

(with P_i spin *after* formation of magnetar)

• No evidence that proto-NSs of magnetars had $P \sim 1 \text{ ms}$


Discussion: explanations of results

- Plausible formation scenario: Progenitor's magnetic field instead of angular momentum determines magnetic field of neutron star/magnetars (c.f. Ferrario's & Wickramsinghe 2006, B-field distribution in WDs vs NSs)
- 2. Angular momentum is taken away before magnetic braking:
 spin energy is completely converted to magnetic energy → interior ~ 3x10¹⁷ G > B_{bip} ~ 10¹⁵ G
 - excess spin energy is lost through gravitation radiation
 - most plausible way: NS deformation due to high B-field (B_{int} > 5x10¹⁶ G, B_{bip}~10¹⁴G, Stella et al. 2005)
 - magnetic field is buried for some time preventing breaking but expect presence of pulsar wind nebula!
- 3. Magnetic field amplification is still possible around P~5 ms

How likely are points 2 & 3? The case of Kes 73/1E1841-045

- According to this study: T=1300 yr, P_{psr}=11.8 s
- Magnetic braking, current $B = 7 \times 10^{14} G$
- Needed to go from ~5 ms to 11.8 s: $B_p = 1.6 \times 10^{15} G$
- Gravitational radiation only dominant for very fast periods ($\sim \Omega^5$)
- After having reached 10 ms magnetic braking more dominant
- Expect a fossil pulsar wind nebula in radio (not X-rays: losses)
- Instead: AXP is inside hole in radio emission
- AXP born with P > 1 s?
- Or AXP PWN quenched by some phenomenon (high B-field, early/fast formation inside ejecta)

Magnetars in Supernova Remnants & Magnetar Formation Jacco Vink