QCD phase transition in neutron stars and

gammazeay Poursts, D. B.³ and Providencia, C.⁴

Mullard Space Science Laboratory, University College London, UK
 Departmento de Fisica, CFM, Universidade Federal de Santa Catarina, Brazil
 School of Physics, University of Sydney, Australia
 Centro de Fisica Teorica, Departmento de Fisica, Universidade de Coimbra, Portugal

A Introduction

The possibility of formation of quark-gluon plasmas (QGP) in heavy-ion collisions leads to a suggestion that phase transition might occur in the dense interiors of neutron stars [1,2]. At temperatures T ~ 0 - 40 MeV, there are two possibilities for phase transitions (see the QGP diagram showing quantum chromodynamics (QCD) phases in Figure 1). As density increases, hadronic matter first converts into QGP, or into either a crystalline quark matter or a two-flavour superconducting phase, and subsequently to a colour-flavour-locked superconducting (CFL) phase.

The current models for the interior composition of neutron stars are (i) pure hadronic matter with or without hyperons (hadronic stars) [1,3]

(ii) a mixed phase of hadrons and guarks (hybrid stars) [1,4]

- (iii) a mixed phase of hadrons and pion or kaon condensates (hybrid stars) [5,6,7], and (iv) deconfined quarks (strange quark stars) [6,8].

According to Bodmer-Witten hypothesis, strange matter is the true-ground state of all matter. Thus, a neutron star may decay to become a strange quark star [9]. A seed of strange quark matter in the neutron star interior would trigger a quark matter front, which propagates rapidly and converts the whole star into a strange quark star in only ~ $10^3 - 1$ [10]. It has been proposed that certain gamma-ray bursts (GRB) are manifestations of a phase transition in the interior of neutron stars. Based on the burst duration, GRB can be roughly divided into two classes (see e.g. [11,12]). They are also distinguishable by their energy released. The short bursts (SGRB) tend to have hard spectra than the long bursts (LGRB). The total isotropic energy released in a SGRB in the first hundred seconds is ~ 10⁵⁰ erg. LGRB are a few hundreds to a few thousand times more energetic. Now there are evidences that LGRB are associated with violent explosions of massive stars [13,14], while SGRB are believed to be caused by compact-star merging.

Here, we consider various phase transitions in neutron stars and calculate the amount of energy released in conversions of meta-stable neutron stars to their corresponding stable counterparts. We will verify whether or not the QCD phase transition can power SGRB.

B. Phase transition and models for the dense matter phases

In this work, equations of state (EOS) based on the following models (see [15] for details) are used to determine the properties of the neutron stars.

 hadronic phase -- non-linear Walecka model (NLWM)

- -- non-linear Walecka model with δ mesons (NLWM $\delta)$ -- quark-meson coupling model (QMC)
- (2) quark phase:
 - -- Nambu-Jona-Lasinio model (NJL)
 - MIT bag model (MIT) -- colour-flavour-locked quark phase (CFL)

Two cases for the NLWM and NLWM δ models are considered. The first assumes only protons and neutrons (p,n) in the derivations of the EOS; the second includes the eight lightest baryons (8b). Several values are used for the bag parameters in the MIT and CFL models. Typically, the bag parameter Bag¹¹⁴ ~ 160 moV (e.g. in the MIT 160 and CFL 160 models), where a quark star is allowed. Unless otherwise stated, the baryonic mass is set to be 1.56 M_{\odot} , approximately corresponding to neutron stars with gravitational mass of 1.4 M_{\odot} . The mass-radius relation and the gravitational mass vs baryonic mass plot of some hadronic, hybrid and guark stars are shown in Figure 2.

For the phase transition, charge conservation is restricted to the neutral case. Strangeness conservation is not required, but β equilibrium is enforced. The conservation of baryon number is approximated, assuming The conservation of the baryonic mass of the star. The Gibbs conditions remain the same, and the EOS is determined by the two chemical potentials μ_n and μ_e . The Tolman-Oppenheimer-Volkoff equations are solved to obtain the baryonic mass, gravitational mass, stellar radius and central energy density. The energy released is identified as the change in the gravitational energy in the conversion of a meta-stable star to a stable star, i.e. $\Delta E = [M_G(MS) - M_G(SS)]/M_{\odot} \times (17.88 \times 10^{53} \text{ erg}).$

 References:

 [1] Glendenning, N. K., 2000, Compact Star, Springer-Verlag

 [2] Pakash, M. et al., 1997, Phys. Rep., 280, 1

 [3] Espindola, A. L., Menezes, D. P., 2002, Phys. Rev., C 65, 045803

 [4] Menezes, D. P., Providencia, C., 2003, Phys. Rev., C 68, 035804

 [5] Glendenning, N. K., Schaffner-Bielich, J., 1988, Phys. Rev. Lett, 81, 4564

 [6] Glendenning, N. K., 2001, Phys. Rep., 342, 393

 [7] Menezes, D. P., Panda, P. K., Providencia, C., 2005, Phys. Rev. C 72, 035802

 [8] Menezes, D. P., Menda, P. M., Providencia, C., 2005, Phys. Rev. C 72, 035802

 [9] Menezes, D. P., Menose, D. B., 2005, PASA, 22, 292

 [9] Menezes, D. P., Menose, D. B., 2005, PASA, 22, 292

 0.35802

 [6] Menezes, D. P., Meirose, D. B., 2005, PASA, 22, 292

 [9] Bombaci, I., Datta, B., 2000, ApJ, 530, L69

 [10] Horvath, J. E., Bernenato, O. G., 1988, Phys. Lett., B 213, 516

 [11] Pran, T., 2006, Rev. Mod. Phys., 76, 1143

 [12] Olor, J. et al., 2000, PASJ, 76, 1143

 [13] Woosley, S. E., 1993, ApJ, 405, 273

 [14] Wan Paradijs, J. et al., 1997, Nature, 386, 686

 [15] Menezes, D. P., Meirose, D. B., Providencia, C., Wu, K., 2006, Phys. Rev., C 73, 025806

Figure 2. (Left) Mass-radius relation of some examples of hadronic, hybrid and quark stars conside mass vs baryonic mass for some hadronic, hybrid and quark stars. (Adopted from [15].) red in this work. (Right) Gravitational

C. Results

Four types of conversion of metastable stars (MS) to stable stars (SS) may occur. The energy released in cases are presented in Table 1

(1) Hadronic star ---> quark star

- Conversion of a MS with NLWM(δ)/QMC to a SS with MIT/CFL generally yields $\Delta E \sim 10^{53}$ erg. -- Conversion of a MS with NLW (δ)/QMC to a SS with MIT/CFL is not allowed.
- ΔE depends on the bag parameter, and smaller bag parameters give larger ΔE.
 Negative ΔE will result if a too large bag parameter is assumed for the MIT/CFL matter.
 ΔE is larger for MS with NLWM(p,n) than MS with NLWM(8b), and similar results for QMC(p,n) and
- OMC(8h) -- ΔE is similar for cases of MS with NLWM δ and MS with NLWM

(2) Hadronic star ---> hybrid star

- $\Delta E_{\rm c} \sim 10^{50}$ 10^{52} erg, are smaller than those of conversions of hadronic stars to quark stars. -- Conversion of a hadronic star to a hybrid star with kaons is possible, but ΔE is measurable only for
- the cases without hyperons. -- Smaller bag parameters give larger core for the hybrid star, and hence also give larger ∆E
- (3) Hybrid star ---> quark star --- ΔE is 2 to 3 times larger for a conversion to a SS with CFL than to a SS with MIT.

(4) Quark star ---> quark star

- Conversion of a quark star with unpaired quarks (MIT) to a quark star with paired quark (CFL) is possible and could yield $\Delta E \sim 10^{53}$ erg

M8	model (MS)	.535	model (SS)	$M_{1}(M_{\odot})$	$\Delta E(10^{13} erg$
hadronic"	NUW364(p.n)	quark ⁵	MIT 160	1.56	1.91
hadronic*	NLWM6(p.a)	quark ^a	MIT 180	1.25	0.091
hadronic"	NLWMA6(8b)	quark*	MIT 160	1.56	0.94
hadronic*	NLWMA(8b)	quark	MIT 180		<0
hadronic*	NEWM6(p.n)	quark ⁶	CFL 160	1.56	3.73
hadronic*	NLWMA(8b)	quark ⁴	CFL 160	1.56	2.84
hadronic*	NLWM(8b)	cruark ^a	MIT 160	1.56	0.95
hadronic*	NLWM(8b)	cruark ^a	MIT 180	1.80	1.34
hadronic*	NLWM(sb)	cruark ⁴	CFL 160	1.56	2.84
hadronic*	NLWM(8b)	quark ⁶	CFL 180	2.11	3.95
hadronic"	NEWM4(p.m)	emark"	NIL		<0
hadronic*	NEW MACOD	emath ^d	NJL		<0
hadronic*	OMC(n.n)	creath ^a	MIT 160	1.56	1.15
hadronic"	OMC(8b)	cruark ^a	MIT 160	1.56	1.29
hadronic*	OMC(n.n)	creath ^a	CFL 160	1.56	2.97
hadronic*	OM(C)(8b)	crustk ^a	CTL 160	1.56	3.01
hadronic*	OMC(n.n)	habrid?	OMC+kaona	1.56	0.085
hadronic*	OMC(8b)	hobrid?	OMC+kaons		0.0
hadronic"	NLWM4(8b)	hybrid*	NLWM/(8b)+MIT 180	1.56	0.071
hadronic*	NEWMORD	hebrid?	NEWMORD+MIT 170	1.56	0.42
hadronic"	NLWM(8b)	hybrid?	NLWM(8b)+MIT 160	1.56	0.58
hadronic"	NLWM(sh)	hebrid?	NLWM(8b)+CFL 200	1.56	0.005
hadronic"	NEWMOND	Indexid"."	N1WM(8b)+N3L	1.52	0.027
hebrid"	NEWMACKED + MIT 180	courb ²	MIT 160	1.56	0.92
hadarid"	NUMBERSON MET 180	courth."	CT1 160	1.56	2.75
heleid"	NEWM(8b)+MIT 170	courth ⁴	MIT 170		- 10
Indexd"	NEWM(8b)+MIT 160	crowth."	MIT 160	1.56	0.45
belief.	OMCIND+CEL 200	course ha	CEL 160	1.56	2.89
helief.	OMC(N)+CFL 200	creath ^a	CTL 160	1.80	3.31
belief.	NUMBER OF STREET	emark d	NIL		- 10
hebrid?	NEWM(85)+CFL 200	crusth ⁴	CFL 160	1.56	2.90
anals ²	MET 160	course has	CT1 160	1.56	1.47
hybrid? quark ² a. Meneuw, E. Meneuw, F. b. Meneuw, F. Caraigudi d. Meneuw, I. c. Espindela, Santos, A. Caraigudi d. Meneuw, J. f. Meneuw, D.	NEW 31(85)+CFL 200 MIT 160 1. P. Providania, C. 2004, PI P. P. Providania, C. 2004, Bi P. Mohum, D. B. 2005, PJ A. L. Mausen, D. P. 2005, Bio B. S. Mausen, D. P. 2005, Bio R. Mausen, D. P. 2005, Bio P. Providania, C. Michae, K. Mausen, D. P. 2005, Rev. 2010, P. 2005, New York, C. Michael, P. 2005, Bio P. P. Panda, P. K. Providania, P. P. Panda, P. K. Providania, P. P. Mand, P. K. Providania, Science, Scie	epuark ^a epuark ^a ips. Rov., C mat. J. Phys. SA, 12, 291 Spa. Rov., C Jos. Rov., C J. D. B., 200 a, C., 2004, a, C., 2005, 1	CFL 550 CFL 550 79, 05966 , 34, 721 245, 64560 80, 95565 248, 960 L stro-ph/0507529 Phys. Rev., C 02, 005502 Phys. Rev., C 22, 005502	1.56	2.90
g. Menenes, I), P., Melrow, D. B., Providen	cia, C., Wa,	K., 2006, Phys. Rev., C73, 02	5406	
h. Moneses, I	 P., Providencia, C., 2003, P. 	les. Rev., C	68, 025804		
	and the state of t	the three of	1 4 1 4 4 T 4 1 4 1 4 1 4 1 4 1 4 1 4 1		