### Proper motions of isolated neutron stars measured with Chandra

Christian Motch & Adriana Mancini-Pires <sup>(1)</sup>

CNRS/ULP Strasbourg Observatory, France

In Collaboration with F. Haberl (MPE, Garching) & A. Schwope (IAP, Potsdam)

1) Also IAG/USP Sao Paulo, Brazil

#### ROSAT discovered radio-quiet INS or X-ray Dim INS or "The Magnificent Seven"

Blackbody-like X-ray spectra with kT ~ 40-100 eV (+ broad absorption lines), low NH (~ 10<sup>20</sup> cm<sup>-2</sup>), slow rotators (~10 sec), no (?) radio, no γ-ray emission

Evolutionary status and link to other groups of INS debated

Only 7 known

# Why do we want to measure proper motions ?

- A high proper motion (typically > 30 mas/yr) is a criterion for the optical identification of a neutron star (colours can be misleading)
- Tests accretion from ISM as an X-ray powering mechanism (Lbol ~ V<sup>-3</sup>)
- For young objects, gives information on birth place and age
- Provides clues on birth kick velocities
- Feasible at optical wavelength with HST and VLTs and in X-rays with Chandra

#### **Proper motions in the optical**



Proper motion of RX J0720.4-3125:

 $\mu = 97 + - 12 \text{ mas/yr}$ V<sub>T</sub> ~ 46 (d/100pc) km/s

B = 26.7

ESO-VLT + FORS1 2x8h exposures

Motch et al. (2003)

Isolated Neutron Stars: From the Interior to the Surface

Christian Motch & Adriana Mancini-Pires

26 April 2006

#### **Proper motions in the optical**



Proper motion of RX J1605.3+3249:

 $\mu = 144$  +/- 13 mas/yr V<sub>T</sub> ~ 68 (d/100pc) km/s

B = 27.2

Subaru (1999, 2003) + HST (2001)

Motch et al. (2005) (see Roberto Mignani talk)

### **Measuring proper motions with Chandra**

Why Chandra ? : several XDINs lack an optical counterpart or have too faint ones to be observed repeatedly.

Targets: RX J0806.4-4123 (ACIS-I) and RX0420.0-5022 (ACIS-S)

Method : use the background of extragalactic (or remote galactic) sources to define an accurate relative astrometric reference frame. Central CCDs only : 16.9' x 16.9' (ACIS-I), 16.9' x 8.3' (ACIS-S)

Observations : two 20ks observations in 2002 and 2005, same period of the year, instrument and roll-angle.

•Typically ~20 background X-ray sources common to the two epochs

•Reference frames matched using a ML method allowing translation and rotation around the aim point of the equatorial coordinates

•Tested celldetect, wavedetect, various detection thresholds and energy bands

# **Simulations**

- Chandra ray-tracer MARX 4.2.1
- Simulate the 26 X-ray sources common to the 2002 and 2005 ACIS-I images (same total intensity and position as the real ones, but new photon distributions on the detector pixels)
- Realistic random background extracted from calibration data
- Aim point moved by 1/4, 1/2 and 2/3 of pixel (0.5 arcsec)
- Neutron star position moved by 0.34, 0.75 and 1.0 arcsec

#### **Results of the simulations for ACIS-I**

Shift recovered with an accuracy of ~ 0.11 arcsec (1  $\sigma$ )

Errors dominated by the accuracy with which the frames of astrometric reference sources can be matched

Part of the scatter seems systematic and depends on the fractional pixel offset



#### Results for RX J0806.4-4123 and RX J0420.0-5022

Best positions are obtained with wavedetect in the 0.5-5.0 keV band

Frame matching errors are of ~0.11 " (ACIS-I) consistent with simulations, and ~ 0.22 " (ACIS-S)

NO significant proper motion observed:

RX J0806.4-4123: shift < 0.15 " (0.10" on average)

=>  $\mu$  < 73 mas/yr (2  $\sigma$ )

RX J0420.0-5022: shift < 0.40 " (0.30" on average)

=>  $\mu$  < 150 mas/yr (2  $\sigma$ )

#### **Proper motions of ROSAT discovered INS**

RX J1856.5-3758 <sup>(1)</sup> RX J0720.4-3125 RX J1605.3+3249 RX J0806.4-4123 RX J0420.0-5022  $\begin{array}{ll} \mu = & 333 \ \text{+/-} \ 1 \ \text{mas/yr} \\ \mu = & 97 \ \text{+/-} \ 12 \ \text{mas/yr} \\ \mu = & 144 \ \text{+/-} \ 13 \ \text{mas/yr} \\ \mu < & 73 \ \text{mas/yr} \\ \mu < & 150 \ \text{mas/yr} \end{array}$ 

Relatively high velocities =>

XDINSs are likely not old neutron stars re-heated by accretion from the ISM but rather young cooling objects.

<sup>1)</sup> Neuhäuser 2001, Walter 2001

# Using the absorption wall marking the edge of the "Local Bubble" to constrain distances

3-D maps derived from
Nal absorption toward ~
1000 nearby stars
(Lallement et al. 2003)

(see Bettina Posselt talk) RX J0806: d < 200 pc

RX J0420: No constraint



RX J1605: d < 200 pc ?

RX J2149: No constraint

RX J0720: No constraint (source located in the Canis Major Cavity)

The EUVE database (Welsh et al. 1999) confirms the absorption pattern, albeit with a lower angular resolution.



Isolated Neutron Stars: From the Interior to the Surface

Christian Motch & Adriana Mancini-Pires

26 April 2006

#### Transverse velocities of young pulsars (Hobbs et al. 2005)

Are XDINSs moving more slowly than young radio pulsars ?



RX J1856 *d* ~ 180 pc, HST parallax, (Kaplan 2004)
 RX J0720 *d* ~ 300 pc (Kaplan et al. 2002) and now 250pc (MvK, HST)

# **Birth places**

Possible XDINS birth places:

 RX J1856.5-3758:
 Upper Sco OB2 (~10<sup>6</sup> yr ?)

 RX J0720.4-3125:
 Tr10 (~6 10<sup>5</sup> yr)

 or Lower Sco OB2 (3 10<sup>6</sup> yr)

 RX J1605.3+3249:
 Upper Sco OB2 (~ 10<sup>6</sup> yr )

The 3 brightest of the "Magnificent Seven" seem to have a local origin (Sco OB2 is at ~ 140 pc)



Nearby INS and local stellar structures

Blue lines are possible INS positions assuming d = 100 - 400 pc

OB member locations after de Zeeuw et al. 1999

All XDINSs are located in a half sky centred on Sco OB2

Isolated Neutron Stars: From the Interior to the Surface

Christian Motch & Adriana Mancini-Pires

26 April 2006

# Conclusions

The "Magnificent Seven" seem a locally born population dominated by the nearby Sco OB2 – Vela OB2 associations. They are probably still close to their birth place.

> Open issues:

- What is the true distance of these INSs ?
- Why don't we detect fainter XDINs born in more remote parts of the Galactic Plane and Gould Belt (e.g. Orion) ?
- Is the velocity distribution of XDINs really different from that of young pulsars ?
- > What is the numerical importance of this population ?