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Introduction

Anomalous X-ray pulsars (AXPs) are slowly rotating
(5-12 sec) young (< 100 000 yr) isolated neutron stars

X-ray luminosities (~10%° erg/s) greatly exceed rates of
rotational kinetic energy loss (~1033 erg/s)

AXPs are generally believed to be magnetars (B>1014 G),
their X-ray luminosity being powered by magnetic energy

Alternative explanation: X-ray emission attributed to accretion

from disk of SN-fallback material (van Paradijs et al. 1995, Chatterjee et al.
2000, Alpar 2001)



Fallback-disk idea has difficulties explaining some
observations (e.g. Hulleman et al. 2004), but strong motivation for
further study of disk characteristics, because optical/IR
emission might stem from disk.

Discovery of IR emission from the AXP 4U 0142+61 (wang,
Chakrabarty & Kaplan 2006), attributed to a cool, passive (X-ray
irradiated) dust disk, however,

Ertan et al. (yesterday’s talk) show that IR emission stems
from an active, dissipating gas disk. Allows, e.g., derivation of
NS magnetic field strength from inner disk radius.

But: disk-emission hitherto modeled exclusively with
blackbody-rings. Our aim: Construct more realistic models by
detailed radiation transfer calculations.



NLTE disk modeling

 Radial structure: a-disk (Shakura & Sunyaev 1973)
* Divide disk into concentric rings
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NLTE disk modeling

Radial structure: a-disk (Shakura & Sunyaev 1973)
Divide disk into concentric rings

Each ring: plane-parallel radiating slab, detailed vertical
structure, computed by AcDc (Accretion Disk code):

— hydrostatic equilibrium  (gas and radiation pressure)
— radiative equilibrium (full line blanketing,

generalized Unsdéld-Lucy scheme)
— NLTE rate equations (pre-conditioned — linear)




Non-LTE rate equations

For each atomic level | of each ion, of each chemical
element we have:

In detalil:
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Non-LTE model atom for iron

lonisation stages Fe | — X

Number of line transitions: 3 001 235 (from Kurucz)
Combined into ,superlines” between ,superlevels*
Opacity sampling with 30 700 frequency points

photon cross-section Fe IV superlinel — 7
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NLTE disk modeling

Radial structure: a-disk (Shakura & Sunyaev 1973)
Divide disk into concentric rings

Each ring: plane-parallel radiating slab, detailed vertical
structure, computed by AcDc (Accretion Disk code):

— hydrostatic equilibrium  (gas and radiation pressure)

— radiative equilibrium (full line blanketing,
generalized Unsdéld-Lucy scheme)
— NLTE rate equations (pre-conditioned — linear)

— radiation transfer eqs.  (short characteristics,
allowing for irradiation)
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NLTE disk modeling

« Computational method: Accelerated Lambda Iteration
(ALI) for simultaneous solution of all equations

— kinematic viscosity parameterized by Reynolds number
(Re=15000 — a=0.01)

— vertical run of viscosity according to Hubeny & Hubeny
(1997)



* Input parameters for disk model
- Ms=1.4 Mg (Rys=9.7 km)
— Inner and outer disk radii: 2000 km, 200 000 km (9 rings)
— Accretion rate: 3-10° Mg, /yr
— Chemical composition:
a) pureiron
b) silicon-burning ash: Si=0.1, S=0.1, Fe=0.8 (mass fractions)

o X-ray irradiation: by central source is currently neglected

« Computation of synthetic spectra; aims, among others:
Check validity of LTE and blackbody assumptions for disk
emission.

o First results: Modeling of UV/optical spectra
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Radial disk structure: effective temperature T4 (R)
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V.o (R) / 1000 km/s
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Radial disk structure: Kepler rotation velocity v, (R)

i R =40 000 km

V.o = 2200 km/sec — P, =2 min .
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Temperature structure, cut through disk vertical to midplane
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! i I
_ | . | . 1 . _

5 10.2 208 425 86.7 176.6 360.6 7345 1500
2500~ | S
2000 -
B I
=, 1500
N B
E | =
=) - =
% 1000 O =
500 - -
0 [l : 1 : . . : | . ; ; . | : ; . S
0 5.0x10* 1.0x10° 1.5%10° 2.0x10°

Radius r [km]



19

~

—
a

log F, / erg/(s A) + const

13

relative contribution of single rings to total disk flux (rings 1,6,8,9)
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Temperature structure, cut through disk vertical to midplane

T [1000 K]
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Effect of disk composition: pure Fe vs. Si-burning ash (ring 8)
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log ionisation fraction

vertical ionisation structure of iron (ring 8)
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log I, / erg/(cm?® s A sterad)

LTE vs. non-LTE (ring 8, specific intensity at i = 87°)
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Limb darkening (ring 8, specific intensity at i = 87° and i = 18°)
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Limb darkening (ring 8, specific intensity at i = 87° and i = 18°)
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Complete disk spectrum, Kepler rotation included, different inclinations
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Summary

o Overall disk spectrum independent of detailed chemical
composition as long as iron is the main constituent: no
difference between pure Fe and Si-burning ash composition.
Fe opacities are dominant.

e Overall disk spectrum not influenced by non-LTE effects.
However, equivalent widths of individual line (blends) can
change by a factor of =2.

« Limb darkening affects the overall disk spectrum. Flux can be
reduced by about a factor of =2 when disk is seen almost
edge-on (in addition to geometry factor).



Depending on inclination, the disk flux can be a factor of =2
greater or less compared to a black-body radiating disk.

Strong iron line blanketing causes broad (>100 A) spectral
features that could be detectable even from edge-on disks.

Future work

Systematic parameter study of disk emission (accretion
rate, disk extent, ...)

Disk irradiation by thermal X-ray emission from neutron
star



