X-ray Emission from Millisecond Pulsars (solitary or non-accreting)

Slava Zavlin (NASA/MSFC)

Isolated Neutron Stars: from the Interior to the Surface, London, April 24-28, 2006

Rotation-powered Millisecond Pulsars (MSPs):

short and stable spin periods, P<10 ms, dP/dt \approx 10⁻²¹ – 10⁻¹⁹ s/s (126 radio MSPs according to the ATNF catalogue)

72 in close binaries \rightarrow spun up by accretion \rightarrow recycled pulsars

very old objects, $\tau_{char} = P/(2dP/dt) \approx 1 - 10 Gyr$

very low surface magnetic fileds, B \propto (P dP/dt) $^{1/2}\approx 10^8-10^9$ G, due to Ohmic decay and (possibly) accretion-induced decay

except radio, X-ray band is the main source of information on MSPs via:

- nonthermal (magnetospherc) emission
- thermal radiation from small hot spots on neutron star surface around pulsar magnetic poles — polar caps (PCs)

 $R_{pc} \approx [2\pi R^3/cP]^{1/2} = 2 [P/5 ms]^{-1/2} km, T_{pc} \approx 0.5-5 MK$

- the rest surface is too cold, < 0.1 MK, for X-ray band but can be seen in UV (Kargaltsev et al. 2004)
- emission from pulsar-wind nebulae

MSPs with available X-ray information

Nonthermal emission:

PSR	Р	d	τ	Log dE/dt	pbin
	ms	kps	Gyr	erg/s	day
B1937+21	1.6	3.6	0.2	36.04	∞ = solitary
B1957+20	1.6	2.5	1.5	35.20	0.4
J0218+4232	2.3	2.7	0.5	35.38	2.0
B1821-24	3.1	3.1	0.03	36.34	∞
J0751+1807	? 3.5	1.2	7.1	33.86	0.3
J1012+5307	? 5.3	0.4	4.9	33.67	0.6
Power-law spe	ctra, shar	p pulses,	large p	ulsed fractions	(>50%)
Thermal emis	sion:				
J0030+0451	4.9	0.3	7.7	33.53	00
J2124-3358	4.9	0.3	3.8	33.83	00
J1024-0719	5.2	0.4	4.4	33.72	∞
J0437-4715	5.8	0.14*	1.6	33.58	5.7
Blackbody-like	e spectral (componen	ts, broa	d pulses	* – parallax

PSR B1821-24

PSR B1821-24

Chandra HRC (Rutledge et al. 2004)

PSR J0218+4232

Chandra HRC (Kuiper et al. 2002)

Two fastest-spinning MSPs:

B1937+21 — ASCA (Takahashi et al. 2001), SAX (Nicastro et al. 2003), RXTE (Cusumano et al. 2003)

B1957+20 (eclipsing, "black widow") — Chandra (Stappers et al. 2003)

PL spectra with $\Gamma \approx 1.9$, $L_X \approx (1.3, 0.4) \times 10^{-3} \text{ dE/dt}$

pulsed profile of B1937+21 with one very strong, narrow peak (a much weaker second pulse is possible)

pulsations of X-ray flux of B1957+20 to be detected yet

PSR B1957+20

H_α bow-shock plus

X-ray tail (Stappers et al. 2003)

Chandra ACIS

PSR J0437-4715

First MSP detected in X-rays (Becker & Trümper 1993), ROSAT: soft spectrum, pulsed flux with $f_p \approx 35\%$

ROSAT and Chandra data revealed:

two-component spectrum with

- a soft thermal PC component of a nonuniform temperature decreasing outwards from 2 MK (core) to 0.5 MK (rim)
- nonthermal PL of Γ≈ 1.8 component prevailing at E>2 keV (Zavlin & Pavlov 1998; Zavlin et al. 2002)

the only MSP detected in UF/FUV (Kargaltsev et al. 2004) \rightarrow $T_{\rm surf}\approx~0.1~\rm MK$

(Zavlin et al. 1995)

• two identical small spots on magnetic poles

- a weakly magnetized hydrogen atmosphere
- the GR effects: redshift, gravitational bending
 - \rightarrow model radiation depends on
 - (1) temperature and size of the spots
 - (2) mass-to-radius ratio, M/R
 - (3) star geometry angles α , ζ

Chandra HRC (Zavlin et al. 2002)

XMM observation of PSR J0437-4715:

- neither single nor simple thermal+nonthermal (e.g., BB+PL) model yields a reasonable fit or model parameters ($\Gamma \approx 3$, $n_H \approx 2 \times 10^{20}$ cm⁻²)
- a two-component thermal plus nonthermal model required, as found from the previous data

the thermal PC model, core+rim:

$$\begin{array}{l} T_{core} \approx 1.4 \ \text{MK}, \ T_{rim} \approx 0.5 \ \text{MK} \\ R_{core} \approx 0.4 \ \text{km}, \ R_{rim} \approx 2.6 \ \text{km} \\ L_{bol} \approx 1.7 \times 10^{30} \ \text{erg/s} = 0.4 \times 10^{-3} \ \text{dE/dt} \ (\text{for one PC}) \end{array}$$

(BB model \rightarrow smaller radii and higher temperatures)

the nonthermal PL component:

 $\Gamma \approx 2.0, L_X \approx 0.5 \times 10^{30} \text{ erg/s} = 0.1 \times 10^{-3} \text{ dE/dt}$

(consistent with the ROSAT+Chandra results)

thermal PCs, core+rim, plus nonthermal PL componets

Phase dependence of normalizations of the spectral components of X-rays from PSR J0437-4715

PSR J0030+0451

ROSAT (Becker et all. 2000):

pulsations with a double-peaked profile

XMM (Becker & Aschenbach 2002):

pulsations of $f_p \approx 50\%$, pulsed fraction possibly increasing with E

single PL gives $\Gamma{\approx}4,~n_{H}\approx~2{\times}10^{21}~{\rm cm}^{-2}-$ unreasonable single BB does not work

two-component models, BB+PL ($\Gamma \approx 3$) or BB+BB, do

PSR J0030+0451

PSR J2124-3358

ROSAT (Becker & Trümper 1999) : possible pulsed X-ray emission no spectral information

ASCA (Sakurai et al. 2001): no significant pulsations the spectrum — either a BB model of T_{BB}≈3.6 MK, R_{BB}≈0.02 km or a PL of Γ≈3 → the thermal model is more preferable XMM observation of PSR J2124-3358 :

- the pulsar's spectrum resolved only up to 3 keV
- single PL fit $\rightarrow \Gamma \approx 3.3$, too large absorption $n_{H} \approx 2 \times 10^{21} \text{ cm}^{-2}$
- single thermal model fit \rightarrow large data excess at E>1.5 keV
- best fit with, thermal+nonthermal, model:

one-temperature PCs —

 $T_{pc} \approx 1.2 \text{ MK}, \text{ R}_{pc} \approx 0.4 \text{ km},$ $L_{bol} \approx 0.6 \times 10^{30} \text{ erg/s} = 0.1 \times 10^{-3} \text{ dE/dt (for one PC)}$

the nonthermal, PL component —

 Γ =1.5 (fixed), $L_X \approx 0.9 \times 10^{30}$ erg/s

PSR J2124-3358

possible double-peaked structure → contributions from two components or a single peak of asymmetric shape due to the GR effects, the Doppler boost (Braje et al. 2000)

PSR J2124-3358

 H_{α} bow-shock (Gaensler et al. 2002)

and

X-ray tail

PSR J1024-0719

XMM EPIC-MOS data on PSR J1024-0719:

- the pulsar's spectrum resolved only up to 3 keV
- single PL fit $\rightarrow \Gamma \approx 3.5$, too large absorption $n_{H} \approx 2 \times 10^{21}$ cm⁻²
- single thermal model provides an acceptable fit, e.g., PCs:

upper limit on a possible nonthermal component (Γ =1.5):

$$L_X < 0.2 \times 10^{30} \text{ erg/s} = 0.04 \times 10^{-3} \text{ dE/dt}$$

PSR J1024-0719

PC "rim" component: T_{rim}≈0.4 MK, R_{rim}≈1.1 km

PSR J1024-0719

single broad pulse per period

Nonthermal vs. Thermal

Nonthermal en	nission:			
PSR	dE/dt	$\underline{B^{LC}} = \underline{B^{surf}} \times (\underline{R}/\underline{R^{LC}})^3 [\underline{R^{LC}} = cP/2\pi]$		
	10 ³³ erg/s	10 4 G		
B1957+20	1.6×10 ²	40		
B1937+21	1.1×10 ³	102 — close to that in		
B1821-24	2.2×10 ³	74 the Crab pulsar		
J0218+4232	2.4×10 ²	32		

Saito et al. 1997

Thermal emission:

J0437-4715	3.8
J0030+0451	7.7
J2124-3358	3.8
J1024-0719	5.3

Conclusions

- in PSRs J0437-15, J0030+0451, J2124-3358, J1024-0719, thermal PC radiation prevails over nonthermal component (plus about 16 more MSPs in Tuc 47)
- measured PC efficiencies, L_{bol} / [dE/dt] = (0.1–0.5) ×10⁻³,
 - (A) are similar to those of some old ordinary pulsars (Zavlin & Pavlov 2004)
 - (B) exceed by a factor of 10 predictions of theoretical PC models
 - → further elaboration of pulsar models and PC heating mechanisms (curvature radiation, inverse^ÉCompton scattering)
- fits with the "core+rim" PC model indicate PCs may have nonuniform temperature distributions → models are required
- modeling of observed pulsed profiles to put constraints on M/R and geometry (Pavlov & Zavlin 1997) \rightarrow models of magnetospheric emission