Galaxy Formation in the Universe through Near-Infrared Spectroscopy

Ignacio Ferreras & Ray Sharples

Science Core Team:
James Dunlop, Anna Pasquali, Francesco La Barbera, Alexandre Vazdekis, Sadegh Khochfar, Mark Cropper, Andrea Cimatti, Michele Cirasuolo

Richard Bower, Jarle Brinchmann, Ben Burningham, Michele Cappellari, Stéphane Charlot, Christopher J. Conselice, Emanuele Daddi, Eva K. Grebel, Rob Ivison, Matt J. Jarvis, Daisuke Kawata, Robert C. Kennicutt, Tom Kitching, Ofer Lahav, Roberto Maiolino, Mat Page, Reynier F. Peletier, Andrew Pontzen, Joseph Silk, Volker Springel, Mark Sullivan, Ignacio Trujillo, Gillian Wright

ESA L2/L3 Science Definition Workshop
Paris, September 3-4, 2013
Bridging the gap between large and small scales

- Galaxies provide a fundamental link between particle physics and cosmology (large scale structure of the Universe).
- Cosmology missions treat galaxies as test particles (e.g. Euclid), but lack the required capabilities to understand their formation and evolution.
- The process of galaxy formation involving gas hydrodynamics, star formation, feedback, and black hole astrophysics are still largely known at a “first order” level.
- Galaxies are unique laboratories where the complexity of the baryon physics can be probed.
How do we bridge this gap?

- Galaxy formation can only be tackled with large, high quality spectroscopic datasets.
- Spectroscopic surveys provide the data needed to probe in detail mechanisms such as:
 - Galaxy bimodality
 - AGN/SF activity
 - Environment
 - Reionization in the Universe
Galaxy bimodality

Star formation / black hole growth interplay
The Sloan Digital Sky Survey (SDSS) collected high quality spectra from ~1 million galaxies, mainly probing a large volume of the “nearby” (z<0.1-0.2) Universe.

Although the key science driver of SDSS was cosmology, its contribution to galaxy formation has made a huge impact (over 80% of “official” SDSS papers)

50% of top cited papers over the past decade involve galaxy surveys

Essential ingredients that made it successful
- High quality spectroscopy
- Probing large volumes (\(\geq 1 \text{Gpc}^3\))
- \(~1\text{ million galaxies}\)
Probing the bulk of galaxy formation

- However, SDSS only probes galaxy formation in the narrow $z<0.1-0.2$ window
- ... which represents the most recent 10-20% of the age of the Universe, missing the bulk of the complex processes leading to our current Universe
- Two key cosmic epochs need to be probed in a similar amount of detail
 - The peak of galaxy formation and black hole growth ($z\sim1-3$)
 - The formation of the first galaxies and reionization of the Universe ($z>6$)

Hopkins & Beacom(2006)
A logical step in ESAs Cosmic Vision

Theme #4
“How did the Universe originate and what is it made of?”

Galaxy Formation/Evolution:
11000 papers over the past decade.
10/20 most cited papers in astronomy in 2006

Planck (CMB)
Euclid (Dark Energy)
Gaia (MW kinematics)
Herschel (Dust)

Missing!
The bulk of galaxy formation (z~1-12)

Cosmology

Galaxy Formation/Evolution:
11000 papers over the past decade.
10/20 most cited papers in astronomy in 2006
Two main themes, same instrument

The peak of galaxy Formation
\[z=1-3 \]
- Information-rich optical spectrum
- Lyman-\(\alpha \) region shifts into the Near-infrared
- Stellar Populations
- Chemical Enrichment
- Galaxy Dynamics
- Environment: Halos vs Galaxies

The first galaxies
\[z=6-12 \]
- Lyman-\(\alpha \) region shifts into the Near-infrared
- Lyman-break galaxies (+ Ly-\(\alpha \) emitters)
- Clustering of the first galaxies
- Re-ionization sources
- Black Hole activity
<table>
<thead>
<tr>
<th>Stellar populations</th>
<th>Line strengths</th>
<th>Galaxy dynamics (gas and stars)</th>
<th>Star formation / black hole growth interplay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Star formation</td>
<td>Spectral fitting</td>
<td>Velocity dispersion</td>
<td>Emission line diagnostics</td>
</tr>
<tr>
<td>histories</td>
<td></td>
<td>Outflows</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rotation curves</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Stellar populations: Star formation histories
- Line strengths: Spectral fitting
- Galaxy dynamics (gas and stars): Velocity dispersion, Outflows, Rotation curves
- Star formation / black hole growth interplay: Emission line diagnostics

![Image: Stellar populations](image1.png)

![Image: Galaxy dynamics](image2.png)

![Image: Star formation](image3.png)

![Image: Galaxy dynamics](image4.png)

Kewley et al. (2006)
Chronos white paper (Ferreras et al. 2013)

<table>
<thead>
<tr>
<th>Topic</th>
<th>Description</th>
<th>Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black hole growth</td>
<td>[OIII] luminosities [OII],Hα</td>
<td></td>
</tr>
<tr>
<td>Star formation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environment and mergers</td>
<td>Redshift determination with $\Delta v \sim 100-200$ km/s</td>
<td></td>
</tr>
<tr>
<td>Clustering and reionization</td>
<td>Redshift determination with $\Delta v \sim 100-200$ km/s</td>
<td></td>
</tr>
</tbody>
</table>

Courtesy SDSS

Iliev et al. (2012)

Rodighiero et al. (2011)
What type of survey is needed?

- **Stellar-mass limited survey**: $H_{AB} \lesssim 24-26$
- ~1-2 million, high-quality spectra (continuum)
- Resolution $R \sim 1500$
- Similar comoving volume as SDSS:
 - $V(z<0.2) = 0.5$ Gpc3
 - $z \sim 1-3$: 23 deg2
 - $z \sim 6-12$: 13 deg2
 - DM halo evolution: Factor 2x
- 2-tiered survey
 - Deep ($H_{AB} < 24$): 40-50 deg2
 - Ultra-Deep ($H_{AB} < 26$): 5-10 deg2
Why NIR from space?

This is an example of two similar galaxies, roughly with the same stellar mass (a few 10^{10} solar masses) and at the same redshift ($z \sim 2$)

Compare the ~ 1 hour exposure from space (HST) with 5 hours from the ground (VLT). Spectra shown at the same resolution ($R \sim 100$ in H-band)

Ground-based plagued by atmospheric effects:

- Airglow
- Absorption
- Time variability
WHAT?

- Large spectroscopic survey
- Probe optical region at $z \sim 1-3$ and Lyman-α at $z > 6$
- High quality data (continuum)

HOW?

- 2.5m space telescope
- Near-infrared spectrograph (0.9-1.8μm)
- High multiplex (~ 5000)
- $R=1,500$ spectral resolution
Simulated case for a 2.5m (i.e. HST-like) space telescope, optimized for NIR moderate-resolution spectroscopy (i.e. Chronos)

Typical massive galaxy at $z \sim 2$
Let us consider two cases of very deep integration times. (Low Zodiacal background assumed)

As reference, the HUDF/ACS images have a total integration time of ~ 1Ms.

These limits are extremely challenging/unfeasible even for the future generation of ground-based telescopes (e.g. E-ELT).
A simulation for an “E-ELT”-like aperture (D~40m) from the ground. We use the same characteristics as the previous simulations (for Chronos) but including sky absorption and airglow.

Rather optimistic as we assume perfect sky subtraction.
<table>
<thead>
<tr>
<th></th>
<th>Chronos</th>
<th>JWST NIRSpec</th>
<th>E-ELT Optimos-EVE</th>
<th>VLT MOONS</th>
<th>VLT KMOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area (m²)</td>
<td>4.5</td>
<td>25</td>
<td>978</td>
<td>52</td>
<td>52</td>
</tr>
<tr>
<td>FOV (deg²)</td>
<td>0.2</td>
<td>2.50x10⁻³</td>
<td>0.0107 (7'Ø)</td>
<td>0.15</td>
<td>0.0113 (7.2'Ø)</td>
</tr>
<tr>
<td>Multiplex</td>
<td>5000</td>
<td>100</td>
<td>30</td>
<td>500</td>
<td>24</td>
</tr>
<tr>
<td>Etendue</td>
<td>0.9</td>
<td>0.06</td>
<td>10.46</td>
<td>7.8</td>
<td>0.59</td>
</tr>
<tr>
<td>$t_{SN=20}(H=24)$ ks</td>
<td>150</td>
<td>60</td>
<td>25</td>
<td>5200</td>
<td>5200</td>
</tr>
<tr>
<td>Integration time, 1 million spectra (yr)</td>
<td>1</td>
<td>19</td>
<td>26</td>
<td>330</td>
<td>6866</td>
</tr>
</tbody>
</table>

Chronos is unrivalled as a NIR spectroscopic survey telescope.

Future facilities such as JWST and E-ELT will be complementary, rather than competing.

Actual survey time ~ 5 x Integration time (... of exclusive use!)

Survey Time (years)
Telescope

- Heritage from Euclid, Herschel and Gaia
- 2.5m diameter telescope, 1deg FoV
- Korsch/Ritchey-Chrétien design
- Zerodur or SiC mirror optics
- Image quality FWHM<0.3” (i.e. not diffraction limited)
- Size and weight compatible with Ariane V launch
Spectrograph

- Single instrument (cost effective)
- 8 identical multi-object spectrographs
- Fixed format spectrograph giving $R \sim 1500$ over 0.9-1.8μm
- NIR detector technology
 - Space-qualified technology will be available (e.g. Teledyne H4RG)
- Eight 4kx4k arrays
- Other options will be considered (e.g. Selex, Teledyne-H2RG)
Target Selection: DMDs

- Baseline for target selection is Texas Instruments (TI) digital micro-mirror (DMD) device, 2048x1024 (13.8μm pixel)

- Bi-stable angle provides on/off 'shutter' at position of each source

- Preliminary space qualification during Euclid Phase A (Zamkotsian+ SPIE 7932)

- Long heritage in digital projectors near you!

- Needs development programme for drive electronics and AR coatings
Target Selection: Alternatives

- Space-qualified MEMS devices also under development in Europe
- Institute of Microtechnology at Neuchâtel, Switzerland have demonstrated smaller format (32x64) electrostatically actuated Si micromirror array with good fill factor and operation to <100K
- Alternative technologies such as liquid crystal spatial light modulators and beam steering optics will also be studied during the pre-Phase A design

Manufactured 2048-element micromirror array
Target Selection: Catalogue

- *Chronos* is a fully spectroscopic mission. Requires *imaging* for the pre-selection of targets.
- Targets will be provided by the Euclid wide and deep surveys:
 - Wide (15-20,000deg2) $H_{AB} \sim 24$
 - Deep (40deg2) $H_{AB} \sim 26$
- Future extension of ESO/VISTA-based NIR surveys
- Subaru/HyperSuprimeCam, LSST
- WFIRST (?) would also aid in faint target selection
- Cost-effective on board imaging: “DMD-off” channel
Chronos in a nutshell

- *Chronos* is the only feasible facility to link cosmology and local studies of the Universe. Very large community of extragalactic astrophysicists.

- *Chronos* will provide the highest quality NIR spectroscopic data from ~1-2 million galaxies over the z~1-12 range. Main science drivers:
 - Understand the peak of galaxy formation and black hole growth
 - Characterize the epoch and sources of reionization
 - Immense legacy value (cosmology, transients, brown dwarves)

- Within the coming *decades* it will not be possible to obtain the required quality from ground-based observatories

- Synergies with Herschel, Euclid, LSST, ALMA, SKA
 - *Chronos* will not compete with, but complement and empower large facilities such as JWST, E-ELT
