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Abstract

The paper shows the separation of stochastic properties
in images or curves by analysis with different methods.
A fuzzy measure and a fuzzy function represent these
stochastic properties. Related to their importance the
such represented stochastic properties are fused by the
fuzzy integral. The fuzzy integral can be used as a new
fuzzy measure; an iteration is generated until the
interesting information is separated. If during the
procedure of isolating a selected property the result
violates with the original aim, then the search procedure
has to be interrupted and another aim has to be traced.
This is organised with the help of the Choquet integral.
An estimated threshold selects the different stochastic
parts.
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1.  INTRODUCTION

The analysis and the fusion of stochastic properties
show a great similarity in the mathematical methods for
images and curves. Consequently, both are considered in
their generality. The normal basis of many image
processing algorithms is the detection and acquisition of
information in the form of well-defined features such as
edges, contours, structures and skeletons [1, 2, 3]. In
many real-world images however, such information is
not readily available. The areas in the images have to be
distinguished by their stochastic. A similar condition
exists for some relationships given as curves [4].  This is
the case for curves of signals corrupted by coloured
noise, superposed stochastic signals, disturbed time
series or noise corrupted stereo lines. For the analysis of
such images and curves the stochastic properties are
very important and have to be decomposed. Often, in
such cases, different stochastic relationships can be
identified to describe properties by using fuzzy methods.
In this paper methods are given to separate stochastic
properties in images and curves. The methods can be
applied for time and local dependencies, however the
specialities of every case have to be implemented
accordingly.
Normally, the stochastic information is given
continuously in a time or local interval. This is the

foundation for the application of most mathematical
methods to analyse the stochastic effects by a system of
stochastic differential equations [5]. The measurement
however produces only sampled values and furthermore
the values are limited in their amplitude and they cannot
change suddenly by physical effects. Therefore it is
difficult to detect the stochastic in such data. For small
regions the central limit theorem (law of large numbers)
and the general ergodic theorem are violated under this
circumstances. The data have to be analysed for lager
areas. The areas are normally so large that we can expect
that many kinds of stochastic are superposed in the
areas.  This means that we have to search for every
stochastic component over a large or even the entire
region and we have to try to expose different properties
by different analysing methods of stochastic. Thus, we
cannot fully decompose the superposition. The
importance of different stochastic properties obtained by
different methods is not the same. This difference of
importance related to the applied method gives after
their fusion a better decomposition.
Another problem is the representation of different
stochastic properties by the same mathematical
description. This is a necessary condition for a fusion.
The fuzzy measure and the fuzzy function give the
possibility to describe different types of stochastic
properties in the same manner. We have also the
problem, that we do not know all the properties in this
system and so we cannot normalise the contributions to
a property. This problem is also solved by the fuzzy
measure by loss of additivity. This representation gives
also the possibility for a fusion in form of the fuzzy
integral or more general by a Choquet integral. The
isolation of the hidden stochastic properties can be used
for the separation by stochastic or for the elimination of
stochastic effects.

2.  APPLIED METHODS FOR THE SELECTION OF
STOCHASTIC PROPERTIES

The application of different methods gives the
possibility to find results where the stochastic properties
are represented by various degrees of importance.
Because the time domain is more familiar to us, we will
use the equation in the local dependence as used for
images. The stochastic effects are represented by a



system of coupled stochastic non-linear differential
equations of the form:
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                            . . . . . . .
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Here, myyy ,,, 21 L  are the m  components of the

stochastic and F are the m  non-linear matrices for the
relationships between the components. The  m
coefficients G  are the gain factors for the noise n  and
x  represents the pixel-point or the region in the image.
Besides this system for the data exists a stochastic
equation for the acquisition of the data. In vector
representation the system of stochastic differential
equations can be written in a stochastic integral
representation of digitised form by:
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The information within the pixel )( 1+ixy  is obtained by

the observation process )( kxz . The digitised
observation value is given by:
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W(x) and V(x) are independent Wiener processes. The
non-linearities are determined by a priori knowledge.
For the solution of the system of non-linear stochastic
differential equations the martingale representation [5, 6,
7] is applied. By this method the effect of approximation
is clearly to understand because the calculation remains
in the same space as in the model given. This is not the
case for the most other methods that use the Fokker–
Planck equation. In [5] it has been derived, that for a
square integrable martingale the process px z y( , )  can
be written in an integral representation of the form
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where N nx x= ℜ( , )  is a martingale and Ps  is a
stochastic process. Because the stochastic differential
equations depend only on z, we obtain for the
expectation value of p z yx ( , )
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By this method the effect of approximation is clearly to
understand because for the calculation the same space is
used as for the model.
On the other hand, stochastic properties are eliminated
by non-linear transformations such as Walsh
transformations, wavelet-transformations and Fourier
decompositions. By the choice of the parameters certain
characteristics are more important than others. The
effect of the changing parameters on the representation
of stochastic properties is relevant and will be analysed
in advance. The results are used as a priori information.
These methods are applied if an a priori knowledge
exists of the possible stochastic in the data. If a priori
knowledge does not exists then non-parametric methods
can find such relationships and also isolate stochastic
properties. Methods applied for this are the rank
ordering, rank filtering and calculation of distributions
of signs. For this the original value is subtracted by a
stochastic mean. The values are adapted by the
estimation of the best thresholds for the isolation of
stochastic properties. These such obtained stochastic
properties have to be represented in a special manner to
combine many of these for a better estimation.

3.  REPRESENTATION OF STOCHASTIC PROPERTIES BY
FUZZY MEASURE AND FUZZY FUNCTION

For the fusion of different kinds of stochastic a
representation of stochastic properties in the same
expression is necessary. The different types of stochastic
are collected in a set of properties, where the members
of this set are fuzzy in their contribution for the
determination of a selected area. The fuzzy measure
gives the possibility to describe different types of
stochastic properties in the same expression. This is
achieved by mapping the properties of different kinds on
the closed interval [0,1], which is the area of the fuzzy
measure. For an optimised decision all relevant
stochastic properties have to be fused. For this fusion
stochastic properties are not only described by a fuzzy
measure but also by a fuzzy function. If the fuzzy
property is more related to a region, then a fuzzy
measure is used; if a stochastic property is better
described by a particular distribution of the grey values,
then this is represented by a fuzzy function.
For a better decision-making the combination of the
selected properties related to their importance is used.
Considering the importance of a property implicates the
loss of additivity. The normalisation as required by the



probability does not exist anymore. By the fuzzy
measure the properties described by different kinds of
relationships are mapped into the closed interval [0,1].
The fuzzy measure, first defined by Sugeno [8], has,
besides the additive terms as a probability measure, a
term with the combination of all elementary fuzzy
measures multiplied by a factor λ. Fuzzy measures are
also described, where only the monotonicity is used [9].
The factor λ has an effect similar to a weight factor for
the interaction between the properties. If λ = 0  then  the
fuzzy measure is equal to the probability measure.
The coupling of the elementary fuzzy measures
(densities) )( 11 xg  over the elementary region 1x  with

another elementary fuzzy measure )( 2xg  over the

other elementary region 2x  is defined by [8]:
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where 1))(1())(1( 21 −++= xgxg λλλ  is a
coupling constant used as a substitution for the loss of
additivity. For a set of elements { }ixA =  the
relationship above can be used recursively and gives:
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This can be written as a product
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The coupling parameter λ will be obtained by solving
the equation
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This shows the mathematical concept for calculating the
measure for the coupled elementary properties for small
areas. If the non-linear equation for  λ is too difficult or
very time-consuming to solve, then a good
approximation is an iterated coupling with two
properties, where one of them is the result before.
Properties especially capable for the representation by a
fuzzy measure are:

- logical functions of some bitmaps of data within an
       interval,
-      estimated values of non-linear filtering higher/lower
       as a threshold
- regions given by the retransform of a wavelet
       representation with adapted coefficients
-      maxima/minima regions of a curve

For the fusion the stochastic properties are also
represented by fuzzy functions. The fuzzy functions are
mostly a collection of values over a number of single
pixel points. The values of the neighbour pixels are of
stochastic nature and often not directly correlated with
this value. Normally, these fuzzy functions are described
by a characterisation over a threshold. Outside of such a
characteristic threshold the values depend very weakly
on the real value. Inside the interval the values generate
fuzzy properties for the adapted condition. For the fuzzy
function properties are used such as:

-  differences of data values in different distances

-  the weak change of the data values in related areas

-  the difference of the stochastic in different directions

-  the number of ranks related to different distances

-  the stochastic values obtained by the subtraction of the
    original and estimated value

-  the values obtained by wavelet transformation of a
    selected parameter

These fuzzy functions are also normalised and mapped
on an interval given by a boundary. Whereas the fuzzy
measure is better adapted for effects represented in
special regions, the fuzzy function characterise the
stochastic change over a region of a fuzzy measure. The
values are combined in the similar manner as with the
fuzzy measure. For example, the image values can be
divided in bitmaps. The highest and the two lowest
bitmaps can be combined logically in a non-addditive
case with help of a given function. A similar case is the
combination of histogram values over very small regions
obtained with different intervals and combined non-
additively by some parameters. More demonstratively
spoken, a more functional property is represented by a
fuzzy function )( ,lkxh over a region of a fuzzy measure

)( ,lkxg .

4.  FUSION OF STOCHASTIC PROPERTIES BY A FUZZY
INTEGRAL

The values over the possible region of a stochastic,
represented by a fuzzy measure )( ,lkxg , are connected

with the values )( ,lkxh  over the pixels representing the

strength of a stochastic property. The value )( ,lkxh  is

described by a fuzzy function where the values are



normalised to 1. The functional relationship between the
fuzzy measure and the fuzzy function is represented by
the fuzzy integral. For the fuzzy integral the old
definition of the fuzzy integral of Sugeno [8] will be
used, because it is well adapted to the problem of
detection of stochastic properties. With Sugeno [8] the
fuzzy measure is combined with the fuzzy function in
the form (written as a stylised f  )

( )[ ]{ },,min
]1,0[

sup)( αα
α

α HAgdgxhAf ∩
∈

=⊕

   with     { }ααα ≥= hxH

Here αh  is the cut of h  at the constant α. For )(xhα  the
values at the pixel-points are used, representing a
stochastic property. α is the threshold where the
assumption is fulfilled, that the property is used in the
minimal condition. The region A  is given as the data
region where surely a specific stochastic is expected. It
may be also the whole image for the pixel region and the
whole possible range for a fuzzy function.
The important property of a fuzzy measure is that its
value is mapped on the closed interval [0,1]. This is
given by the calculated value of the fuzzy integral. This
gives the possibility to use the result of a fuzzy integral
as a new fuzzy measure g2
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This newly produced fuzzy measure is linked with the
region obtained by another stochastic property so that

2f  obtained

                  
22 )('

' dgxhf
A

f ⊕= α

In the following step the next region of another property
is combined with this fuzzy function 2f . In such a way

a set of fuzzy functions { }nfff ,,, 21 L  is obtained by

fuzzy measures { }nggg ,,, 21 L . The summation of
all combinations of fuzzy measures with fuzzy functions
makes sure that all possible properties in all
combinations, which should be considered, are used. In
such a way an image is obtained, where the (grey)
values represent a measure for the membership to the
stochastic. This is a normal number, not a fuzzy number.
With the help of a threshold we decide, which pixel of
the data belongs to the existence of a selected stochastic.

5.  CHOQUET INTEGRAL FOR THE REVISION OF
DECISION MAKING DURING THE PROCESS

The fuzzy function )(xhα  can be represented by the
quantity of the similarity between an assumed stochastic
part in the image and the real stochastic part in the
image or curve. The fuzzy measure can be described as
the area where this stochastic is expected. For the fusion
of information by the fuzzy integral it is assumed that
the fuzzy measure is monotone. If the properties are
contradictory and it is not clear at the beginning which
kind of information is more important, then the result
obtained from the first part of the image or curve can be
changed to another one in the second part of the image
or curve. In this case the incompatibility is greater as the
synergy between the fuzzy sets B  and C  so that the
monotonicity is violated. With the help of the Choquet
integral [10] a measure theory for non-monotonic fuzzy
measures can be constructed. The Choquet integral can
be applied for the detection of stochastic properties  [11]
if the monotonicity for the detection of a stochastic
property is violated.
With respect to the non-monotonic fuzzy measures a
functional of bounded variation can be represented as a
Choquet integral. Thus the non-monotonic fuzzy
measure χ for the properties s1 and s2, given by

)()( 121 sss χχ ≤U  , can be combined with a fuzzy
function of properties by the Choquet integral. The

Choquet integral, noted by ∫(C) ,  is defined by:

     χα dHAw(C) )(∫ I
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For three ordered functions f s f s f s( ) ( ) ( )1 2 3≤ ≤
coupled by non-monotonic measures a sum can be
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Here the contribution of f s( )1  in the first term can be
less then the contribution in the second term. Such a
summation can be used for the representation of a
Choquet integral in discrete form:
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With the estimation value ym  of the pixel xm  a series of
Choquet integrals Dm  can be built. With Choquet
integrals, ordered as a rank with the threshold K, the
stochastic properties can be summed in the form

  ( ) ( ){ }
( ){ }2,1,

11

−−−−−

∗−−−−+
−

=

mymymymyKmyu

KmyuKmyu
m

D
m

D

χ

 with D0 0=

The constant K is important for characterising the
properties. K can be obtained by analysing the non-
linear filtered curves of the histograms of special parts
of the image.
For the combination of different properties, which may
be also violated in parts, the Choquet integral is used.
For processing the curve the Choquet integral can be
written in discrete form by
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where  s xi( )  are the values of the properties of the
pixel points xi . To understand this principle let us
consider an example analysing a curve with a disturbed
maximum. For the fuzzy measure the maxima may be
more important than the gradient, so it can be assumed

     χ χmax . .= =0 55 0 45Min   and  χgrad =0 3.   .

The existence of a maximum is a condition for the
existence of a minimum and so the relation between
both is given as

    χ χ χmax,min max min. .= < + =0 5 0 95 .

The existence of gradient and maximum or minimum is
a good feature and gives the condition

χ χ χ χmax, . min, . max .. .grad grad grad= = > + =0 9 0 75

The fuzzy function of the presence of a maximum is
given by fmax , for the minimum by fmin  and by fgrad  for
the gradient. Three parts of the curve may be used to
find the correspondence with another curve. These three
parts are defined by the above values and for the
Choquet integrals they are obtained as:

57.275.075.07.07.0
95.164.09.06.05.0
21.276.05.08.09.0

minmax

C
B
A

integral
Choquet

weighting
ofvalue

gradfffcurve

It can be decided by the maximum of the Choquet
integral, which points are to be used as corresponding
points. The Choquet integral suggests the right decision
C, whereas the weighting suggests the part A.

6.  CONCLUSIONS AND APPLICATIONS

The method gives the possibility to separate various
types of stochastic by a representation of the stochastic
properties by their importance applying different
statistical methods and estimation procedures. By a
representation of the stochastic properties in form of the
fuzzy measure and a fuzzy function the properties can be
fused by the fuzzy integral. This algorithm is working
decision-directed. If the aim is changing and the a priori
assumption is wrong then the algorithm can be changed
automatically by the application of the Choquet integral
for the process of combination of various kinds of
properties.
The method to characterise areas by their stochastic
properties is applied to images of different kinds. The
stochastic structures are detected in images with
treetops, surfaces with corrosion, material surfaces with
texture structures and medical tissues of pathological
structures such as cancer. The application of stochastic
methods for the separation of combined stochastic
properties does not give enough information to separate
the textures. If the isolation of the relevant information
by iterative application of the fuzzy integral is applied
then the information is better. The optimum is obtained
if the stochastic information is fused by the fuzzy
integral, whereas the cutting threshold is also to be
estimated. It is good to see that decisions improve with
the combination of more information. Nevertheless, a
priori knowledge is very important to get good results,
because this method works decision-directed and if the
direction of the decision is not clear enough, then the
obtained solutions are not very precise. If nearly nothing
is known a priori, then the non-parametric method is
used to find the hidden stochastic in the image. In this



way the rank ordering is an effective method for finding
contributions for the fuzzy algorithm.
Examples of disturbances by sensors are SAR-
(synthetic aperture radar) or SONAR images with
speckle generated by stochastic back scattering. Here,
the stochastic is very dominant and this method is
applied on this.
An example of analysing curves disturbed by many
stochastic influences is the retrieval of profiles obtained
from molecular spectra. Weak signals give a big
problem, because only the pressure broadening of the
line can be used to estimate the profile and the line
shape is to be estimated from disturbed spectra. The
baseline is not known and the neighbouring lines
superpose the line of interest. For the analysis many
sources of the incoming noise and the non-linear linkage
by the receiver in the GHz range are used. By
application of the methods described above, the profiles
of very weak signals could be retrieved [12]. Another
example for a successfully application is the analysis of
lines of a stereo image with disturbances and obstacles
hidden in one of the stereo image  [13]. The main
problem is to find the corresponding points even if the
noise is big and the stereo points are detected
automatically. By estimating the shape of the curves and
analysing the neighbourhood of an event and the
combination of all noisy effects the right corresponding
points can be found.

   Fig .1   Original image of superposed cirrus clouds

For the detection of clouds the stochastic is very
important. The cirrus clouds are mostly determined by
their stochastic. Similar problems occur with contrails,
especially if they are aged. The aged contrails have a
similar brightness as the cirrus clouds and can be
distinguished by the difference in their stochastic.
Fig. 1 shows an image of cirrus clouds on top of each
other. By the analysis of the stochastic by fuzzy
measures and fusion with the fuzzy integral the hidden
stochastic structures can be separated. The top cirrus
cloud is given in Fig. 2 whereas the upper is represented
in Fig. 3. In Fig. 2 the extension of the stochastic,
represented in waves, is to be seen.
Fig. 4 shows the separation of hidden contributions of a
spectra for the very weak signal of ClO in the sub-
millimetre range. The received spectrum with noise on it
is the dotted line. The thick line in Fig. 4 is the non-
linearly filtered spectrum. By elimination of parts with
different kinds of stochastic and subtraction of the
original spectra, a separation of the different
contributions is achieved. Fig. 5 shows the adaptation of
the noise curve by an assumed spectrum.

    Fig. 2 Lower cirrus cloud separated by their stochastic



Fig . 3 Upper cirrus cloud separated by their stochastic

Fig. 4 Separation of the spectra by their hidden parts
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