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Abstract

Often measured data are produced by an integration
process over many layers, whereas the parameter
values in every layer are of interest. The data are
corrupted by noise. The estimation of the model
parameters, if only the summed measured data and
their relationships to the parameters (forward
model) are known, is an inverse problem. The paper
shows how coupled integrals near an a priori known
situation can be summed up by an operator
representation. It is shown a method to calculate the
probability density function for model parameter
estimation. The obtained expectation value with the
algebraic dependence of the parametersis related to
the measured value and solves the inverse problem.

Representation of the inverse problem by
operatorsin theoriginal non-discrete form

Very often the measurements and their
connections by coupled systems of summation
with the internal model of a physical or technical
system are al what is known about the
interesting internal system. Given are mostly
only complicated non-linear relationships
between the measurement values and the internal
parameters. Moreover, the measured values are
coupled with more inner parameters over
integrals such as a convolution, and the
measured values are corrupted by noise. This is
the situation for the most digital signal
processing models, where the internal parameters
are a higher-dimensional vector and the measure
vaues are only a scdar. The system is

underestimated because some model parameters
are leaving by an intrinsic lack of data or there
are experimental uncertainties. An uncertainty of
knowledge is aso possible, because the
approximation is to simple for the more complex
reality. Mathematically such a measure problem
is an ill posed problem i.e if a “smal”
perturbation of data there corresponds to an
arbitrarily “large” perturbation of the solution.
Examples for this are to find in the radar
technique, seismology, atmospheric radiation,
and many geophysical problems. The inverse
problems are mostly solved by linear
programming, least-squares and maximum
likelihood methods [1]. Here a novel method is
presented based on an operator representation for
summing up an infinite sum of coupled integrals.
The physical system may be completely
described by a non-linear stochastic differential
equation with a set Q of model parameters. The
parameters may not be directly measurable and
the measurements are corrupted by noise. Some
observable parameters can be operationally
defined whose actual values hopefully depend on
the values of the model parameters.

In most cases the relationships are given by the
non-linear function F with the noise x. The
measured value z is assumed to be dependent of
the heights of the layer y and the interesting set
Q of system parameters by the form:

2(y) = zogsF(Q, 2y, x(y') dy

or in differential form



ﬂly (2(y) - z)= F(Qz(y), x(¥)) (1)

For this equation for the measurements mostly a
nearly known situation exists, for example the
standard-atmosphere  or  the  undisturbed
seismogram. This solution z is used as a
reference where the digital signal procession is
beginning and than followed a development
about this solution. The function z will be
represented related to the standard solution in the
differential form. The function is also developed
by powers of a parameter e . This is only an
auxiliary parameter, which is set later e =1. With

2(y)- . ° H(z ,y) =eH,(z ,y) +e’H,(z ,y) +- (2)
isobtained
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The Taylor series of eq. 1 gives
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The last three upper equations with the terms of
the same power of e give the system of equations

Hi(z.Y) =g (z,y.x(y)dy',

H,(z,Y) = V' F(z,Y . x(¥Y))H. (2 ,y)dy =
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The parameter set Q is omitted for a shorter
writing. Using the T-product [2] of the quantum
field theory for the ordering in the form

F(y)F(y,) for
F(y.)F(y,) for
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the integral terms can be summarised.
Because the integral over the upper and the
lower region isthe same, for H,(z ,y) valid
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Anaogue [3] the higher components are built
and for (2) with e=1
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is obtained.

Calculation of the probability density function
by shifting of operators

The solution of the inverse problem is disturbed
by noise. This effect is reduced if the measured
value is replaced by the estimated value. For this
is used the characteristic function
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where < > is the mean value over a statistical

ensemble. The backward transformation gives
the probability density function
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This can be written more compactly as

. y "
p(z|2) =T expi- - GF (7Y X(¥)) dy yd(z- 2)
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By this representation the interconnection of the
different contributions are represented as an
operator equation. This operator equation can be
solved in most cases by shifting the operator to

the right side and than to omit the term with the
operator. Here are given some examples:
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Where 1Fi(-n, 0.5, cz%) is the hypergeometric
confluent function.

On the other hand, different sums in the
exponential functions can be written for better
calculation in acompact form such as

acos(z+b)+ccos(z+d) —

e
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where A= acos(b)+ccos(d) and

B=asin(b)+csin(d).
The upper operator equations are also applied on
theintegrals of (3) in theform
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That meansin all terms of F(z) is z to replace by

y
z+oc(y') dy'. It can be shown similarly, that
0

after  the shifting of the operator

y
Texpcs(y) z% dy' the value z is to be replaced
0
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by zexpcy(y)dy'. If the  operator
0
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than the value z of the function F (z) is to be
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In such a way the summation of different
integrals is transformed in a solving of operator
equation where the differentia operators are
shifted to right. If all differential operators are on
the right side, then the operators work only on

y
Texpce(y') dy' is shifted to the right side,
0



the functiond(z- z). If this d-function is
represented by the integral

(\:dseZik (z-z,)

then the shifting of the differential operator
7/9z on the right side has the effect that in
exp(ikz) dl ik are replaced by ik+9/9z. For
calculation of the probability density function of
z only known integrals obtained from (5) are to
solve. The estimation value of z as a function of
the interesting parameters Q is than calculated by
the integration with the probability function

2= ¢2p(z.Qz ) dz @

This expectation value z is given as a function
about the a priori solution z; of the interesting set
of parameters Q and is the optimal estimation for
the measured value. For the calculation of the
expectation value in non-linear case can aso
applied the matringale method [4].

Representation of the discrete inverse
problem for model parameter estimation

Because the solution (4) result from an infinite
summation of terms, the deviation from the
beginning state can be big. This infinite number
of terms is aso summed up if instead of an
integra a sum is used. This sum can than be
written as a system of coupled equation.

The measured values are obtained in a discrete
form. For the equation (4) can than be written

2= 7 p(2.Qz)

where the summation is going over different
parts (differnt layers, particles, spectra etc.)
where every part has his own “fingerprints’
(shape of curve, density distribution etc.), which
is a priori known by the forward model. This
gives the possbility to find an optimised

approximation for z with and so to obtain the
best adaptation for the interesting parameter set
Q. Because many non-linear function are
damped, the form is exp(-cz’) and gives 1F;
functions which can be represented as an finite
row, because they contains terms of the form (-
n)* (-n+1)* (-n+2) . In this case al term
higher then the (n-1)" are zero and we get a
finite set of equation for the estimation of terms
of z. This coupled egquations can be used for
calculation of the interesting parameters Q.

If trigonometrically functions are present, than
by the operator representation after the
integration the same function with other
parameters can be produced. In such a way
algorithms for calculation step by step can be
developed. In al applied examples it was
possible to find iterative algorithms of the same
form for calculation of the parameters Q .

The benefit of this method is, that the infinite
summation by the operator technique in
combination with the representation of
integration of non-linear function by an operator
representation allows to develop the result near
an a priori known solution without the problems
in Taylor series. The problems by noise can
reduced by previous non-linear filtering
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