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Coronal field

The coronal magnetic field is responsible for
• connection between Sun and interplanetary space
• channelling Sun’s disturbances through space
• up to near-Earth environment, and beyond

Courtesy of ESA

Courtesy of K. Schrijver Halloween 2003

CMEs: Rearrangement of the low-
atmospheric magnetic field on a
minute time-scale with virulent ejec-
tion of field and material (filaments),
and often accompanied by flares

CMEs/flares are essential to understand the removal of energy and helicity emerging through the
Sun surface



Extrapolation

• The 3D structure of the coronal field is necessary
- low-corona: to validate CME models
- solar wind interaction and interplanetary connection (channeling)

• Event forecast must be able to evolve real configurations forwards in time

Few hundreds km above the photosphere, estimations of ~B are available

- at points or line (e.g., Farady rotation of emission from extragalactic radio
sources Mancuso et al., A&A 2013)

- on the limb (e.g., from CoMP but partial information only)

- in situ (at 1AU, these are the only direct measurements)

But the 3D information is missing
The magnetic vector field can be measured with sufficient

accuracy, resolution, and time cadence only at the photosphere

Field in a prominence cavity

(Ba̧k-Stȩślicka et al., ApJ 2013), and

at 1AU (Nakwacki et al., A&A 2011)

Extrapolation of photospheric measurements into the solar
atmosphere is the main technique for obtaining the full 3D

structure of the coronal field

Deduce ~B in whatever volume from its footprint at the bottom boundary =⇒ it requires a model ...



The quasi-static corona

The average density difference between low-corona and
photosphere

nph/nc ∼ 108

is not matched by any comparable jump in magnetic field =⇒

• the photosphere evolve on a long time scale of hours to days
• the corona, with much lower density, evolve on fast time

scale (Alfvén time order of seconds)

i.e., the coronal field instantaneously adapts to the slow
photospheric changes

Density (dashes) vs height above the

photosphere (SKYLAB, courtesy of

NASA)

=⇒ the corona evolves as a series of quasi-static equilibria
(except at times of fast events,e.g., eruptions)



The magnetically-dominated corona

Kliem, adapted from Forbes JGR 2000

The energy liberated by a (medium sized) CME can
originate only from magnetic sources

Variation of plasma β = plasma pressure
magnetic pressure = 2µ0

p
B2 with altitude

• low corona (i.e., up to ∼1.5 R�) has β < 1
=⇒ magnetic forces dominate over pressure gradients

• except in particular locations (e.g., thin current sheets,
instrumentally undetectable)

Gary, Sol. Phys. 2001

Magnetic field dominates all other sources of energy
=⇒ no possible balance of the Lorentz force



Coronal currents
Currents in the low corona are local, e.g., are found

• at low altitudes, up to chromospheric layers

• in/around filaments, sheared arcades, erupting and flaring structures

• higher, at particular locations (e.g., helmet streamers, heliospheric current sheet)

On the other hand, Thomson theorem proves that the potential field is the minimal energy state

=⇒ E − Ep = free energy (i.e., currents) must be stored in coronal pre-erupting structures!

Thomson theorem
By decomposing the field ~B as the sum of potential, ~Bp = ~∇φ, and current carrying, ~BJ with~J = ~∇× ~BJ,

~B = ~Bp + ~BJ ,

the total magnetic energy E in a volume V is given by

E ≡
1

2

∫
V

dV B2 = Ep + EJ +

∫
∂V

(φ~BJ) · d~S −
∫
V
φ(~∇ · ~BJ) dV ,

where Ep ≡ 1
2
∫
V B2

p dV , EJ ≡ 1
2
∫
V B2

J dV , ∂V is the boundary of V , d~S = n̂ dS, and n̂ is the external normal to ∂V

1. If n̂ · (~B − ~Bp)|∂V = 0 =⇒ n̂ · ~BJ|∂V = 0

2. ~∇ · ~BJ = 0 from Maxwell
then E = Ep + EJ,

=⇒ the energy of a magnetic field is bounded from below by the energy of the corresponding potential field that has the
same distribution of the normal component on the boundary of the considered volume.

NB: at any time, for any plasma.



The force-free model
To first approximation, the low-corona is

1 static on the τph time scale =⇒ ∂t ' 0, LB
Lv

M2
A � 1

2 magnetically dominated =⇒ LB
Lp
β � 1

3 with essential but concentrated currents (~J = ~∇× ~B 6= 0)

The (ideal MHD) momentum balance equation

ρ
(
∂t + ~v · ~∇

)
~v + ~∇p = ~J × ~B

reduces to the force free equation, coupled with the solenoidal condition for ~B

{
~J × ~B = 0 ,
~∇ · ~B = 0

• nasty BVP of coupled nonlinear PDEs (elliptic/hyperbolic), despite its innocent look
• to be solved subjected to photospheric (i.e., not force-free-compatible) BC

It is not a vacuum field (~J = ~∇× ~B requires a plasma), but it is insensitive to inertia and pressure gradients



Magnetograms
The “standard", i.e., photospheric, magnetograms (mgm) come in two types

LoS mgm

SOLIS LoS mgm

• From magnetographs, imaging techniques

• Full disk and fast (up to 45 seconds cadence)

• Measure the component of the field in the direction of
the observer (Line of Sight, LoS)

• Huge historical databases available (essential for
statistics)

Vector mgm

AR10930 Hinode/SOT 12 Dec 2006

• Spectropolarimetric observations come from an iso-τ
surface at photospheric heights

• ~B is inferred fitting the full spectral profiles of the
Stokes parameters (requires atmospheric models)

• Measure LoS, magnitude and orientation of the
transverse component, i.e., almost the full vector
(180deg ambiguity)

• 12min to hour cadence
high spatial resolution (at most 0.16 arcsec) high
nominal accuracy (few G/few tens G on ‖ / ⊥)

The photosphere is not force-free (β ≥ 1), the field above ARs becomes force-free
above ' 400 km (Metcalf et al., ApJ 1995)



FF eqs with nonFF BC?
Extrapolation, as a boundary value problem (BVP), is well-posed if it can be proved

Existence of the solution
Important because part of boundary data come from a finite-β plasma
=⇒ a solution may simply not exist

Uniqueness of the solution
Important because different sets of field lines might be possible for the same set of
footpoints
=⇒ multiple solutions may be possible

Continuity of the solution with respect to the boundary conditions
Important because data do have errors
=⇒ completely (i.e., topologically) different solutions may be obtained using, e.g.,
different instruments

Not well posed, not even for force-free BC

↓ Only one of the method (Grad-Rubin1) was proven to be a well-posed mathematical
problem, at least for small nonlinearities.

↑ Multiple solutions to the 3D FF equations (either analytical or numerical) for a same set of
BC have not been found yet

=⇒ Extrapolations techniques must be checked against known models, and,
in applications, must be constrained by additional information

1
Amari et al, AA 350 1151 (1999)



Forget the photosphere ...

(... for the moment) and reformulate the problem as
• Find the (coronal) magnetic field in a numerical box for given conditions at the lower

(photospheric) boundary, assuming a perfectly force-free field ... everywhere

• Discard: non-force-free effects close to the photosphere and errors in, or inconsistencies
of, measured photospheric fields

Let’s look at general properties and solution methods of the FF equations

Even in this extremely simplified formulation it is not a well-posed mathematical problem.



General properties of FFF
• Energy in the half-space can be computed using the virial theorem

The energy of the FF field in the half-space is (Molodensky Sol.Phys. 1974)

E =

∫
mgm

(
xBx + yBy

)
Bz dxdy

However, if the BCs are not FF, then the energy depends on coordinates (see Wheatland & Metcalf
ApJ 2006 for additional details)

• The components of the field at the boundaries are related to each other

Using~J × ~B = ~∇ · ~~T where ~~T = (~B~B −~~IB2/2), the Lorentz force in the volume above the mgm is
(Molodenski Soviet Ast. 1969, Aly Sol.Phys. 1989)

~F =

∫
V
~∇ · ~~T dV =

∮
∂V

~~T · d~S or, in components,

Fx = −
∫

mgm
Bx Bz dxdy Fy = −

∫
mgm

By Bz dxdy Fz =
1

2

∫
mgm

(B2
x + B2

x − B2
z ) dxdy

and similar for the torque
∫
V ~r × ~∇ · ~~T . The second line holds if the mgm is flux balanced.

• Field components on mgm =⇒ the knowledge of the field inside V is not required

• Sort of “sufficient” definition of what a “FF-compatible” boundary is: they should be small
compared e.g., with the magnetic pressure force 1

2
∫

mgm(B2
x + B2

x + B2
z ) dxdy



Two FFFs

The vanishing of the Lorentz force ~J × ~B can be satisfied by

• ~J = ~∇× ~B = 0 =⇒ potential field B = ~∇φ. Using ~∇ · ~B = 0{
∆φ = 0 ,
∂nφ|V = n̂ · ~B|V

Only n̂ · ~B|V is required to fully specify the solution (recall Thomson theorem)

• ~J ‖ ~B =⇒ typically a scalar function α(~x) is introduced such that ~J = α~B,{
~∇× ~B = α~B
~B · ~∇α = 0

where the second relation is obtained from ~∇ · (~J = α~B) using ~∇ · ~B = 0

- The first equation implies ~J × ~B = 0
- Fl of ~J coincide with fl of ~B (trivial, but useful for visualization)
- α is constant along individual field lines, but changes from fl to fl



Potential fields
• PF as current-free solution (α = 0) of the NLFFF equations

• Unique solution with a well defined energy

• Often a good approximation of the large-scale topology

• Currents modify the topology, but large scale topological features
(like QSLs) do not disappear (see e.g., Aulanier et al., A&A 2005)

=⇒ Depending on the question, the PF may already
provide the answer

PF and QSL vertical cut (vanDriel et al., ApJ 2014)

The PF equation

{
∆φ = 0 ,
∂nφ|V = n̂ · ~B|V

can be solved using the FT solution of the
LFFF problem with α = 0, which inherits the

periodicity of the solution

Alternatively, for a flux balanced, isolated AR in a finite volume

• Use Green function solution only to fill in boundaries (Schmidt
Proc-1964-Hess. 1964), where field is zero outside the FoV

φ(x, y, z) =
1

2π

∫
photo

Bz (x′, y′, z = 0)(
(x − x′)2 + (y − y′)2 + z2)1/2

dxdy

• Use optimized Poisson solvers with the computed Neumann BC

But it is only the minimal energy state ...



The α parameter
α couples the elliptic part to the hyperbolic part of the problem{

~∇× ~B = α~B elliptic, determines ~B from ~J distribution (i.e., from α)
~B · ~∇α = 0 hyperbolic, propagates α (i.e., ~J) along the fl of a given connectivity

- α is constant along individual field lines. If the magnetic vector field at z = 0 is known
=⇒ the map of α at the photosphere

α(x , y , z = 0) =
Jz

Bz

∣∣∣∣
z=0

=
∂x By − ∂y Bx

Bz

∣∣∣∣
z=0

propagates upwards in the volume along field lines

- Therefore, the α at the two ends of a fl is the same =⇒ α on one polarity is sufficient

- Only Bz and the map of α on one polarity at the boundaries are required to fully specify the
solution

- Geometrically, α is the local torsion of field lines, α = b̂ · ~∇× b̂, with b̂ = ~B/|~B|

- For a sheared arcade with B ∼ e−z/lz the shear tan(By/Bx )|z=0 = αlz

- For a semi-circular twisted flux tube α8H/(LΦ2), helicity per unit length and flux

- Typical AR average values of |α| range from 0 to 0.05 Mm−1 (Longcope et al., ApJ 1998)



2. Linear force-free extrapolation



The linear approximation
Introduce the torsion scalar function α(~x) such that ~J = α~B and{

~J × ~B = 0
~∇ · ~B = 0

=⇒
{

~∇× ~B = α~B
~B · ~∇α = 0

A simple way to satisfy ~B · ~∇α = 0 is to assume

α = constant

• ~∇× ~B = α~B becomes linear in ~B (LFFF) =⇒ solution by superposition, e.g., Fourier

• Equivalently, taking ~∇× (~∇× ~B = α~B) yields ∆~B + α2~B = 0 an Helmholtz equation for
the three components separately, linear in ~B
In this case ~∇ · ~B = 0 must be imposed explicitly by ~B = ~∇× ~A, and the gauge condition
reduces the problem to the solution of a scalar Helmholtz equation

•
Analytical solutions are known
which give ~B in V as a function

of its values on ∂V

- Green functions: Chiu & Hilton ApJ 1997; Seehafer SP 1978
- Fourier: Nakagawa & Radu SP 1972; Alissandrakis A&A 1981
- Spherical harmonics: Newkirk 1969
- Superposition of discrete sources: Lothian & Browning SP 1995
- Reviews: Sakurai SP 1981, Wiegelmann & Sakurai LRSP 2013

• Under conditions, only n̂ · ~B|∂V is required to fully specify the solution =⇒ LoS mgm as BC
• By normalizing lengths, α can be eliminated from the equations =⇒ BCs cannot fix it

α is a free parameter



Alissandrakis’ solution
On the computation of constant alpha force-free magnetic field

C.E. Alissandrakis, Astronomy and Astrophysics, 100, 1, July 1981, p. 197

• Variable separation in z and Fourier expansion in (x, y): ~B(x, y, z)
FT−−−→

(u,v)

~b(u, v) exp(−kz)

• Substitute in ~∇× ~B = α~B =⇒ system of linear eqs., the solution exists if k = ±
√

(4π2(u2 + v2)− α2)

• The magnetic field is then given in terms of the FT of the observed magnetogram, bz (u, v, z = 0) as

~B(x, y, z) = (FT )−1
(
~G(u, v, z)bz (u, v, 0)

)
Two contributing solutions

- “Small scale solution" where k is real: |α| ≤ 2π(u2 + v2)1/2

Ĝx (u, v, z) = −i
uk − vα

2π(u2 + v2)
e−z(4π2(u2+v2)−α2)1/2

and similar for the other components (equivalent to Nakagawa & Radu Sol.Phys. 1972)
- “Large scale solution" where k is imaginary: |α| > 2π(u2 + v2)1/2

Ĝx (u, v, z) = Ĝx (u, v, γ, sin / cos((γz)) , with γ = (α2 − 4π2(u2 + v2))1/2

with oscillating terms in z =⇒ diverging energy, and requires the knowledge of Bx and By at z = 0
(equivalent to the Green method in Chiu & Hilton ApJ 1997)

• |α| ≤ αmax = min
(

2π
Lx
, 2π

Ly

)
Limit on αmax, i.e., on~J, derives from the size of the FoV, not from the structure of ~B

Fast, accurate and easy to implement



Constrains to α
In order to have

• finite energy in the column above the mgm of extension (Lx , Ly )
• unique solution

the Fourier coefficients ~b(u, v , z = 0) 6= 0 only at discrete wavenumbers
=⇒ periodic repetition (without DC component, i.e., mgm is flux balanced)

The field is flux balanced (~b(0, 0) = 0) =⇒ the periodically
repeat the mgm (Lx , Ly ), imposing that |α| is smaller than the

smallest eigenvalue yields

|α| ≤ αmax = min

(
2π

Lx
,

2π

Ly

)

(Nakagawa & Radu Sol.Phys. 1972; Chiu & Hilton ApJ 1997;
Alissandrakis A&A 1981)

A DC component gives fl extending to infinity

The field is not flux balanced: the combination of the original
mgm with its the three point-mirror images is flux balanced,

which yields a slightly modified condition

|α| ≤ αmax = min

π(m2

L2
x

+
n2

L2
y

)1/2


with m, n = 1, 2...

(Seehafer Sol.Phys. 1978)
Effective double domain in x and y

For Lx = Ly , the difference between the two αmax is a factor
√

2/2, a factor
√

5/2 if the mgm is flux balanced

Limit on αmax, i.e., on ~J, is unphysical: derives from the
size of the FoV, not from the structure of ~B



Tips and tricks

• As a rule, Green functions methods are slower than Fourier solutions (FFT)
For a plane, Green methods require N4 operations, FFT require (N log2 N)2 operations

• The field at the photosphere is known on a grid =⇒ DFT/FFT is affected by aliasing.
Typically, this he effect is reduced by padding the mgm with zeros (which, however, lower
even more αmax)

• The sign of α in AR can be guessed (tongues, chirality of fls, sigmoids) =⇒ Fourier
methods can be implemented for only positive (respectively, only negative) values of α
mapping into the (0, 2π) (respectively, (−2π, 0)) frequency interval, rather than in (−π, π),
which doubles the value of αmax



How to fix α
Best-α method (Petsov et al., ApJ 1995). Choose the α value that minimize the residual R

R(α,Bthr) =
∑

|Bz |>Bthr

(
(Bx,LFFF − Bx,mgm)2 +

(
By,LFFF − By,mgm

)2
)1/2

For each α in the |α| ≤ αmax only the computation the LFFF at z = 0 is necessary.

Simple, fast, and elegant, but it requires the knowledge of the vector mgm

Comparing fl with EUV or SXR loops in 2D
Iteratively finds the value of α that minimize the distance
between extrapolated and EUV/SXR loops, in average

sense
(Green et al., Sol.Phys. 2002, Carcedo et al., Sol.Phys. 2003, Feng et al., ApJ

2007).

• It can be always applied (EUV and SXR images are taken more often
than mgm)

• Still, it employs 2D projection of 3D structures.

• Human factor in identifying loops, moreover loops ends not always
visible (help from automated feature recognition methods, e.g., Inhester
et al., Sol.Phys. 2008)

(a) Yohkoh/SXT (b) α = −1.26× 10−2 Mm−1, best-fitting case; (c) Slightly
worse matching (α = −1.51× 10−2 Mm−1); (d) Wrong sign of α (Green et

al., Sol.Phys. 2002)



Energy and helicity in LFFFs
In LFFF, free magnetic energy [Ec ], (relative magnetic) helicity [Hm], and α are explicitly related
General relations (Berger Astrophys. J. Suppl. 1985)

Ec = FEp

Hm =
8π

α
FEp

F = F
(

u, v, bu,v, (u2 + v2 − d2
α

2)
)

α cannot be taken out of F
d = linear size of the pixel, Ep = energy of the potential field

Ep =
1

8π

∫
z=0

~z · (~Bp × ~Ap) dxdy

as surface integral (use e.g., Alissandrakis’ LFFF solution)

Linearized (in α) version (Démoulin et al., A&A 2002, Geor-
goulis & LaBonte ApJ 2007)

Ec = Fl d
2
α

2Ep ,

Hm = 8πFl d
2
αEp

Fl =
1

2

∑
u,v |bu,v |2/(u2 + v2)3/2∑
u,v |bu,v |2/(u2 + v2)1/2

where Fl is independent of α

• The general formulae show the (unphysical) resonance at α = αmax

• The linearized formulae
- no resonance for a given αmax
- almost overlap for different αmax

The linearized formulae represent a lower limit to (LFFF) Ec and
Hm that can be prolonged beyond the nominal αmax

Hm(α) for different αmax (vertical

dashes). Solid lines= linearized

formulae Crosses=general formulae



Evolution of α in time

An alternative way to fix alpha, in time (Valori et al., Sol.Phys. 2015)

• The helicity flux through the photosphere can be measured using
(vector or LoS) mgm (Pariat et al., Astron. Astrophys. 2005)

• Estimate or assume Hm(t = 0), e.g., start before AR emergence

• The linearized formulae convert the measured Hm(t) into α(t)

=⇒ Time evolution of α, but without effect of CMEs
Left: Accumulated α(t) and Hm(t) Right:

Accumulated Ec (t) and Ep(t)

Renormalized α(t) and Ec (t) for 3 values of the free parameter

• Using GOES fluxes as proxy of the relative
liberated energy in each event

• ∆Ec ' Hm∆α/4π

• Fixing the only free parameter (α at one particular
time) using standard methods (e.g., EUV)

=⇒ Time evolution of α with flare intensity scaling



Applications of LFFF methods

QSL rooted at observed ribbons position

Flare ribbons and QSLs
• QSLs from LFFF
• Location of QSL is found to match flare ribbons
• First proof of QSL role in coronal reconnection

without nulls

Démoulin AdSpR 2006

AR outflows
• Outflow over monpolar areas, on QSL separaing closed from

long/open fl

• Reconnection between hot and dense closed AR fls with
cooler CH fls

• Contribution from AR boundaries to slow wind

• QSL from LFFF

Baker et al., SP 2009 Outer and inner fl from a QSL at the AR boundary



Applications of LFFF methods

Scaled linear energy ad a function of flux for

56,686 ARs, and H

Connectivity-based method for the computation of H
• Collection of constant-α flux tubes
• Statistical approximation of the relation

between scaled energy and flux
• Estimation of relative H based on

magnetograms only

Georgoulis et al., ApJ 2012

Time evolution of α
From Georgoulis et al., ApJ 2007 combining
• time evolution of the helicity flux
• LFFF relation between H and E
• GOES fluxes to account for E and H depletions

due to CMEs

derive α(t) (factor two smaller than coronal α)

Valori et al., SP 2015
AR10365 time evolution of α = Jz/Bz



LFFF: pros & cons

Depending on the question, the LFFF can provide the answer

Advantages

- Analytical solution in terms of observed quantities, i.e.,
numerical implementations are simple and fast

- General relations can be derived

- Well-posed problem, under certain constrains

- Since only the LoS is required, huge historical
database (e.g., SOHO/MDI), nowadays at high
time-cadence and resolution for full disk (SDO/HMI)

Drawbacks

- α is a global free parameter

- Cannot render potential and current-carrying at the
same time

- Unphysical limitation on α

- Currents are mostly on large scales, which is not what
is observed

- Similarly, Hm has an inverse cascade, hence in a
relaxation to a LFFF =⇒ overestimation on large
scale / underestimation on small scales (Démoulin et
al., A&A 2002)

LFFF mehtods are still used to produce relevant scientific results



Two counter-examples

The TD test case

• NLFFF: current ring surrounded by potential field, averaged
twist: Φ = 1.4π

• LFFF: α = αbest = 0.6 (with αmax = 0.8)

No flux rope: The LFFF cannot render the real field
topology.

NLFFF (top) and LFFF (bottom), 3D (left) and top (right) views (Valori et

al., A&A 2010)

An AR case

• LFFF α = 0.004 Mm−1 (such that Hm is the same as NLFFF)

• NLFFF with GR method

The LFFF does not reproduce the curvature of SXR
loops, even though Hm is the same

=⇒ ~J is not reproduced (hence not the free energy)

AR7912: Yokoh/SXT (left), LFFF (right, top) and NLFFF (right bottom)

(Bleybel et al., 9th EMSP 1999)



3. Nonlinear force-free extrapolation



Main methods overview

{
~J × ~B = 0
~∇ · ~B = 0

• Seek a current-carrying solutions in a finite volume
• No analytical solution in terms of (observed) boundary values is known

=⇒ Numerical solution of the BVP

Different (more or less standard) approaches yield different methods

“Linearize” the nonlinearity (in α): split the cou-
pling between elliptic and hyperbolic parts, and
solve separately, then iteratively

=⇒ Grad-Rubin

Direct solution: Use Green identities to relate val-
ues of ~B on the boundary to values of ~B in the vol-
ume, projecting on a set of trial solutions with co-
efficients to be determined iteratively

=⇒ Boundary Integral

Introduce a global functional of ~B that is mini-
mized if ~B is FF, then find its minimum as a pseudo-
time evolution

=⇒ Optimization

Numerical relaxation: Solve the IVP that has the
BVP as solution at t →∞, as a pseudo-time evo-
lution

=⇒ Magneto-frictional

All methods would lead to the same solution if the corresponding BVPs were well-posed ...

These are the most used / currently developed / extensively tested methods. For more details see references in reviews:

Wiegelmann JGR 2008, Wiegelmann & Sakurai LRSP 2013, Regnier Sol.Phys. 2013



Grad-Rubin method

Solve the system of linear equations{
~B[k ] · ~∇α[k ] = 0
~∇× ~B[k+1] = α[k ]~B[k ]

where k is an iteration index

At each iteration k
• for the given ~B[k ], propagate α along field lines (hyperbolic part)

=⇒ requires α on one polarity

• for a given current distribution α[k ]~B[k ] , solve the Biot-Savart
(elliptic) part to get ~B[k+1] =⇒ requires n̂ · ~B|∂V

• The iteration starts with the potential field, ~B[k=0] , and ends when
an iteration fixed point is reached

• The ~B[k ] at the fixed point of the iteration is a solution to the FF
equation

In implementations of the GR (see e.g., Wheatland Sol.Phys. 2007) typically

- The hyperbolic part is solved by ray-tracing methods (trace field lines from any grid point to the bottom boundary)

- The vector potential representation is used to insure the solenoidal property, and the Poisson problem associated to the
elliptic part is solved using Fourier decomposition (but see Amari A&A 2006 and Inhester & Wiegelmann Sol.Phys. 2006
for alternative methods)

- Both periodic and nonperiodic BC have been implemented

• Well posed problem in finite domain, for small α (Amari et al., A&A 2006). Numerical convergence
might be an issue

• There are two extrapolations for each mgm: the positive (negative) solution given by specifying α on
Bn > 0 (Bn < 0). Recently, Wheatland et al., ApJL 2011 and Amari & Aly A&A 2010 proposed iterative
methods for merging of the two solutions

• α is “instantaneously” propagated along the whole field line in the volume, at each iteration

• α is derived from the observation by, e.g., finite differences, which amplify the noise of observed data

• Spherical version of the method have been developed (see e.g., Amari et al., A&A 2013)



Optimization method
• L =

∫
V

(
|~J×~B|2

|B|2
+ |~∇ · ~B|2

)
dV , positive, vanishes if ~B is FF

• Take the functional derivative of L, a pseudo-time evolution for ~B is
found

∂~B

∂t
= µ~F such that

1

2

dL

dt
= −

∫
V
µF2dV

i.e., such that L is decreasing in time (if ∂t~B|∂V 6= 0 there is
∫
∂V )

• µ is an arbitrary positive function and

• The initial field is (usually) the potential
field with the transverse observed
components overwritten (which makes
L 6= 0)
=⇒ requires the three components of
the field at the photospheric boundary

• Evolve the magnetic field according to
the pseudo-time evolution equation

• Checks on L values for step
acceptance, yielding monotonic
decrease of L

• The evolution is stopped when L is
below a given threshold (or not
decreasing any longer)

In the implementations of the OM

- The ∂t~B|∂V = 0 is relaxed using a weighting function in L (buffer) to reduce the effect of lateral and top boundaries
(Wiegelmann Sol.Phys. 2004)

- Finite differences (Wheatland et al., 2000, Wiegelmann Sol.Phys. 2004) and finite element (Inhester & Wiegelmann
Sol.Phys. 2006) discretizations

- Very flexible method: many additional constrains have been inplemented, e.g., a term is added in L that allows for
deviations from observed data where large errors are present at the bottom boundary (Wiegelmann & Inhester A&A 2010)

• Three boundary conditions are necessary for the OM (whereas the FF problem is defined by two)

• Inconsistent BC will in general produce solutions that are neither solenoidal nor FF

• No α propagation as in GR, the injection of parallel currents depends on coupling with the bottom
boundary =⇒ multi-gridding techniques

• A spherical version of the method was developed (see Wiegelmann et al., A&A 2007)



Magneto-frictional method
Relaxation technique: the BVP{

~∇× ~J⊥ = 0
~∇ · ~B = 0

is the t →∞ solution of the IVP

1
ν

∂~B
∂t

= −~∇× ~J⊥ + ~∇(~∇ · ~B)

• Does not solve the FF, but a FF solution is obtained if the BC are FF

• Diffusive equation (Craig & Sneyd ApJ 1986) for~J⊥ and ~∇ · ~B

1

ν

∂EM

∂t
= −

∫
V

dV (J2
⊥ + (~∇ · ~B)2)

a static state is reached where the solution is FF and DF

• The initial field is the potential field with the transverse observed
components overwritten (which makes~J⊥ and ~∇ · ~B 6= 0)
=⇒ requires the three components of the field at the photospheric
boundary

• Evolve the magnetic field according to the pseudo-time evolution
equation, until a static state is reached

In the implementations of the MF
- 4th CD in space, Runge-Kutta-Chebyscev in time (Valori et al., A&A 2010), several BC (Valori et al., Sol.Phys.2007)
- For an implementation of the MF method using the CESE-MHD code see Jiang & Feng ApJ 2012

• Slow but very robust due to diffusive nature

• Three boundary conditions are necessary for the OM (whereas the FF problem is defined by two)

• Inconsistent BC will in general produce solutions that are neither solenoidal nor FF. However, explicit
relation between nonFF of the boundary to the nonFF of the solution:∫

mgm ~̂z · (~J⊥ × ~B − (~∇ · ~B)~B)dxdy =
∫
V dV (J2

⊥ + (~∇ · ~B)2)

• No α propagation as in GR, the injection of parallel currents depends on coupling with the bottom
boundary =⇒ multi-gridding techniques

• MF is related OM and was derived as a dominant-viscosity case of MHD (Yang et al., ApJ 1987)

• A spherical version of the method was developed (Y. Guo et al., , ApJ 2007)



Boundary element method

From the 2nd Green identity

~B(~x) =

∫
∂V

(
~Y
∂~B

∂n
− ~B(z = 0)

∂~Y

∂n

)
dV

where the λi in Yi = cos(λi r)/4πr must satisfy

∫
V

Yi

(
λ

2
i Bi − α

2Bi − (~∇α× ~B)i

)
= 0

• It is a direct solution in terms of observed values, but not a closed
one due to λi

• As a Green method, the field in one point requires one surface
integral, but the determination of λi require an additional volume
integral =⇒ inherently slow

In the implementations of the BI

• An iterative procedure for fixing λi was introduced (DBIE, Yan & Li, ApJ 2006)

• Recent application to SDO/HMI data (Wang et al., arXiv:1306.1122) using GPU tecniques

• Pointwise solution of the FF

• Both the full vector and α on the bottom boundary are necessary

• Published tests seems to perform comparably to (possibly slightly worse than) other methods

• The method seems to be intrinsically slow, and to require special tecnhiques in order to be used with
high resolution mgm.



Other methods

MHD evolutionary methods
Use some approximation of the zero-β MHD under

1. Strong viscosity in ~∇ · ~T
2. Phtospheric driving reproducing the mgm

• ~∇ · ~B cleaner Inoue et al., , ApJ 2014

• CESE-MHD NLFFF CODE Jiang and Feng, ApJ 2013

Vertical Integration Method

The FF equations can be written as

∂z Bx = ∂x Bz + αBy

∂z By = ∂y Bz − αBx

∂z Bz = −∂x Bx − ∂y By

∂zα = (−Bx∂xα− By∂yα)/Bz

• ~B(z + ∆z) is determined by direct integration from
~B(z), similar to an IVP with z = t

• Ill-posed: no BC can be imposed at the ’top’
=⇒ any error is exponentially amplified with height

• Singularity at Bz = 0 must be treated

• Many failed attempt to regularize the solution (see
e.g., Demoulin et al., Sol.Phys. 1997, Amari et al.,
A&A 1998)



Main methods overview
Grad-Rubin

{
~∇× ~B = α~B
~B · ~∇α = 0

=⇒
{

~∇× ~B[k+1] = α[k ]~B[k ]

~B[k ] · ~∇α[k ] = 0

- Linearize by splitting elliptic and hyperbolic part
- if converge to the same solution then ~B is FF

- BC: Bn and α on one polarity

Optimization

{
~J × ~B = 0 ,
~∇ · ~B = 0

=⇒L =

∫
V

|~J × ~B|2

|B|2
+ |~∇ · ~B|2dV

- if L = 0 then ~B is FF
- Prescribe ∂t~B such that L is minimized
- BC: Three components are prescribed

Boundary Integral

{
~∇× ~B = α~B
~∇ · ~B = 0

⇒

 ci
~Bi =

∫
∂V

(
~Y ∂

~B
∂n −

∂~Y
∂n
~B0

)
d~S

Yi =
cos(λi r)

4πr , i = x, y, z

- Use Green identities to relate ~B in V to ~B(z = 0) = ~B0
- λi are determined iteratively

- BC: Three components and α are prescribed

Magneto-frictional

{
~∇×~J⊥ = 0 ,
~∇ · ~B = 0

=⇒∂t~B = −~∇×~J⊥ + ~∇(~∇ · ~B) (1)

- Consider an IVB for ~B, diffusion of~J⊥ and ~∇ · ~B
- if a static state is reached then ~B is FF
- BC: Three components are prescribed

• All iterative methods, often use the PF as initial state of an iterative/pseudo-time evolution
• Each method use the BC differently (directly on in some combination, e.g., α = Jz/Bz )
• They basically solve different problems, possibly equivalent if the BC are FF (but no

proof)

Quite likely to get different solutions if BC are non-FF



Does it happen?

Integrated los |~J| of AR10953 for different extrapolation codes

Same magnetogram, different methods.

Note that, in this case, the largest differences
are to be found between P and N solutions of

GR methods

More than 60 (!) extrapolations were analysed
in a NLFFF-Consortium comparative paper
that differs in methods, implementations, bc,

mgm preprocessing, embedding.

DeRosa et al ApJ 696 280 (2009)

Different methods react differently
to the inconsistency between the
FF assumption and magnetogram



Twisted coronal structures

• Kink and torus instabilities as driver of eruptions
Török, Kliem, ApJ, 630, L97 (2005)
Kliem and Török Phys. Rev. Lett. 96 (2006)

• Twisted structures enter all CME initation models

=⇒ Extrapolation should accurately reproduce twist.

TRACE images of a flaring region and the

corresponding numerical simulation of a

kink-unstable flux rope

We have seen how the LFFF fails with TD. Is NLFFF any better?



Test case of a flux rope: TD
Titov and Démoulin2: 3D solution of the nonlinear, force-free equations consisting of a current
ring surrounded by a potential field.

TD: Current density iso-surface at 30% of peak

Equilibrium is insured by a balance
between the current ring self-force
and the external poloidal field
generated by two subphotosperic
magnetic charges. In this
application, two buried magnetic
dipoles fix the average twist to
−2.12π.

The field rapidly decreases away
from the flux rope.

TD models a compact, bipolar AR, with two satellite sunspots connected by a current-carrying
flux rope.

2
Titov and Démoulin, A&A 351 707 (1999)



Test case of a flux rope: TD
Titov and Démoulin2: 3D solution of the nonlinear, force-free equations consisting of a current
ring surrounded by a potential field.

TD: Field lines

Equilibrium is insured by a balance
between the current ring self-force
and the external poloidal field
generated by two subphotosperic
magnetic charges. In this
application, two buried magnetic
dipoles fix the average twist to
−2.12π.

The field rapidly decreases away
from the flux rope.

TD models a compact, bipolar AR, with two satellite sunspots connected by a current-carrying
flux rope.

2
Titov and Démoulin, A&A 351 707 (1999)



TD: extrapolation results
Only the vector field at the bottom is used as input. Small errors on3

• Solution consistency
• σJ = 0.007
• < |fi | >= 7× 10−5

• Morphology
• 0.6% apex CFL
• 0.5% apex HFT

• Stability and energy
• 1.1% twist
• 4.4% helicity
• 0.4% energy

TD equilibrium field

σJ =CWsin θ= current-averaged sine angle between ~B and ~J = (
∫

dV |~J⊥|)/
∫

dV |~J|
fi ≡ (

∫
vi

dvi ~∇ · ~B)/
∫
∂vi

dsi |vB| fractional flux generated in vi

=⇒ The MF method reconstructs the TD with great accuracy

3
Valori, Kliem, Török, Titov, A&A 519 A44+ (2010)



TD: extrapolation results
Only the vector field at the bottom is used as input. Small errors on3

• Solution consistency
• σJ = 0.007
• < |fi | >= 7× 10−5

• Morphology
• 0.6% apex CFL
• 0.5% apex HFT

• Stability and energy
• 1.1% twist
• 4.4% helicity
• 0.4% energy

TD: Reconstructed field

σJ =CWsin θ= current-averaged sine angle between ~B and ~J = (
∫

dV |~J⊥|)/
∫

dV |~J|
fi ≡ (

∫
vi

dvi ~∇ · ~B)/
∫
∂vi

dsi |vB| fractional flux generated in vi

=⇒ The MF method reconstructs the TD with great accuracy

3
Valori, Kliem, Török, Titov, A&A 519 A44+ (2010)



TD: HFT and BP reconstruction

The MF code can accurately reproduce complex topological features3

Hyberbolic Flux
Tubes:

sort of 3D X-lines,
preferred locations where
current sheets are formed

Field lines are in grey if below the HFT, in green if above the HFT

Bald patches:

locations of inverse
crossing of the Bz -pil by
the poloidal component

Bald patches at z = ∆ in the original (left) and reconstructed (right) fields

=⇒ Topological features do not hinder extrapolation.

3
Valori, Kliem, Török, Titov, A&A 519 A44+ (2010)



Strongly flux-unbalanced mgm

Half TD: flux unbalanced and current ring through the side boundary

Full mgm Half mgm

Field lines (top) and current density iso-surface at 33% of peak (bottom)

=⇒ MF code can handle current-carrying field lines leaving the box
through non-photospheric boundaries.



Kink-unstable case
Initial and final configurations are (approximately) force-free states with the same vector
magnetogram at the bottom.

Initial, erupting, and final configurations of the unstable MHD evolution

What is the MF code producing in an unstable case3?

Much longer extrapolation run, with
two clearly distinguished states of
minimal and maximal energy/σJ .

σJ (solid) and energy (dashes) evolution in a stable (left)
and unstable (right, logscale) cases.

3
Valori, Kliem, Török, Titov, A&A 519 A44+ (2010)



Kink-unstable case

The maximal and minimal energy/σJ states correspond to different topological solutions:

Initial (left), maximal energy (middle), and final (right) configurations of the extrapolated unstable case.

A flux rope is formed (at max energy/min σJ ) but rapidly destroyed. The final state of
extrapolation is similar to the final state of the MHD eruption3.
=⇒ Clear indication of the unstable carachter of the test field.

3
Valori, Kliem, Török, A&A 519 A44+ (2010)



Test conclusions

The MF nonlinear extrapolation method, when confronted with a force-free compatible boundary
like the TD,

• can reconstruct the 3D, force-free magnetic field with very high accuracy

• is not hindered by topological complexity (e.g., fl with more than one turn, BP, HFT)

• does not require flux balance in the input mgm (open sides and top)

• can indicate if the vector mgm corresponds to an unstable configuration

=⇒ support applications to measured vector mgm
• to compare with observations

• to invesigate the field topology associated with CME events

• to study flux emergence, energy and helicity build-up

• as initial condition of MHD simulations

• ...

which are, however, not force-free compatible ...



4. Observations as boundary conditions



Vector magnetograms
Physical effect

• Zeeman and Hanle effect =⇒ level splitting emission by ambient magnetic field

• Emission is characterized by Stokes parameters (IUQV: intensity, two linear, circular)

• which are related to the ambient field by (weak field approx.)
Bl ∝ V/I and Bt ∝

√
(Q2 + U2)/I

• The linear polarization are defined modulo a 180◦ rotation Courtesy of the University

of Birmingam, and Google

Courtesy of B. Lites

Measurements
• In e.g., Hinode/SP, the slit scans the FoV

• In each pixel of the slit, Stokes profiles are sampled as a function of λ
(higher sampling means higher spectral resolution)

• Sampled Stokes profiles are fit with (semi) analytical emission models
(requires a model of the atmosphere, e.g., Milne-Eddington)

• From the best-fitting synthetic Stokes profiles the ambient magnetic field is
estimated (inversion)

• The inversion procedure is not well-posed mathematically (Del Toro Iniesta &
Ruiz Cobo, Sol.Phys 1996)

Properties of the resulting field
• The orientation of the transverse field is intrinsically undetermined (180◦

ambiguity)

• The error on Bt is intrinsically about one order of magnitude larger than on Bl

• Specific emission lines of particular elements are chosen according to magnetic
sensitivity

• Measurements are on a iso-τ surface, not on a iso-height surface

• Contributions from plasma at different heights may sum up (e.g., in penumbrae)

Magnetic field strength, inclination,

and azimuth from Hinode/SOT of 14

Feb 2011

All above is very qualitative: See,e.g., Landi degl’Innocenti 1994 and Lites JGR 2000 for details



Influence of inversion models

Different inversion model may severely
impact on the magnetic field values and,

hence, on extrapolations



Removal of the 180◦ ambiguity
The transverse components ~Bobs

t is measured in amplitude and direction but not in orientation
=⇒ 2D problem where only the sign of Bobs

t is to be determined. Several methods, based on
- comparing Bobs

t to a reference field or direction

- minimizing the vertical gradient of the magnetic
pressure

- minimizing the vertical current density

- minimizing some approximation to~J

- minimizing some approximation to ~∇ · ~B

are discussed and compared in a test using model vector fields in Metcalf et al., Sol.Phys 2006.

Acute angle method Local: The correct orientation of the ob-

served ~Bobs
t is the one that forms an acute angle with the local

potential field ~Bpot
t

~Bobs
t · ~B

pot
t > 0

- Fast and simple

- Few variations (e.g., use a LFFF rather than PF)

- Rate of success ranging from 64% to 84% pixels of
correct removal

- Often used as first step of more elaborate methods

Minimum energy method Nonlocal: Minimize a pseudo-energy
functional

E =
∑
mgm

(
|~∇ · ~B| + |~J|

)2

min(|~∇ · ~B|) for consistency and min(|~J|) to reduce small
scales. Minimize the upper bound of energy

- Global minimum found using simulated annealing

- Use local best-α LFFF to compute ∂z Bi in E

- Best performing algorithm (up to 100% pixels right)

- Currently used in the standard data production of
SDO/HMI and Hinode/SP

Many minima are possible =⇒ not well posed

Inclusion of (simulated photon) noise and spatial resolution (Leka et al., Sol.Phys 2009)
• Pixels with low signal/noise are mostly affected
• Noise and unresolved structures induce errors in the 180◦ ambiguity resolution, but only local ones
• Suggested order: inversion of spectra =⇒ 180◦ ambiguity resolution =⇒ binning to lower resolution, if necessary

Errors on the removal often appears as ridges of Jz



Heliographic transformation
Unless the (small) FoV is at the center of the solar disk, the LoS is not ⊥ surface
=⇒ a RS transformation is required

Use (linear) transformation from image to
heliographic (Gary & Hagyard Sol.Phys. 1990)

~Bhelio = ~A · ~Bimage

~xhelio = ~c · ~x image

~A(B0, B, L− L0, P) vector rotation matrix and~c(B0, Bc , Lc − L0, P)
is a coordinate transformation, expressed in terms of lat/lon (B, L) of

each pixel and of the image center (Bc , Lc ).

• No sphericity effect (zeroth order in 1/R)
• The RS transformation mixes the observed longitudinal and transverse components (large

errors propagates)
• Already 10◦ off disk center there are visible effect on the location and shape of the PIL

(K.D Leka priv. comm.)
• All components are required. If only the LoS is available, a radial field is normally assumed



Are mgm a consistent BC?
Example of α = Jz/Bz in AR 11158 (SDO/HMI data)

• < |α| >' 0.7 Mm−1

• max(|α|) ' 10 Mm−1

• Alternating sign (e.g., penumbrae,
see e.g., Gosain et al., 2014)

Threshold for α computation:
|Bz | > 0.05 max(|Bz |)

Vector mgm, α, and sign of α
Spiky and noisy, with “fibril”-like structures in penumbrae (artifacts of SP inversion?)

Left: Forces in time (analogous to Sun et al., 2012)

Right: Jz − Jrotated
z

Time evolution of forces shows
• 6-hours oscillations (satellite?)
• longitudinal dependence of Fx (Higher order

projection effects? Noise?)

Also Jz has large variations (up to 40%) depending on
the RS employed to compute it (noise, unresolved
structures?)





Extrapolation of nonFF mgm
Combined effects finite-β origin, non-planarity, noise, inconsistency, errors in the 180◦ ambiguity
removal, ...

Looking at Lorentz forces on the mgm, e.g.,

Fx = −

∫
mgm Bx Bz dxdy

1
2

∫
mgm(B2

x + B2
x + B2

z ) dxdy

Force Torque
nopp 0.127 0.133

Hinode/SP mgm of AR10978 13 Dec 2007

=⇒ mgm not FF compatible. What are the consequences on NLFFF extrapolations?

Each method uses the BC differently, so different
consequences. However, as a trend

• Non force-free solutions (high values of CWsin)
• Lower energies (with respect to FF BC)
• Bad match with observations
• For methods using ~B rather than ~A, pathological

solutions with E < Epot may occur (!)
(see e.g., Schrijver et al., ApJ 2008)

Extrapolation metrics (GR, OP, MF methods) and

GR fl of AR10930 (Schrijver et al., ApJ 2008)



Negative free energy?
Energy decomposition into solenoidal and nonsolenoidal contributions

• Unphysical: E < Ep,s

• ~∇ · ~B max (combined) error 18% (13%)

E (1033 erg) (Ep,s Ej,s Ej,ns Emix)/E
no-pp 1.56 1.03 0.10 0.05 -0.18

MF NLFFF of AR10978 13 Dec 2007. (ns)/(s):non/solenoidal,
(p):potential, (j): current

=⇒ The extrapolation of nonFF mgm can lead to non-physical solutions if ~∇ · ~B too high

Energy of non-solenoidal fields (Valori et al., A&A 2013)

For a given magnetic field ~B in a finite box, solve numerically

1 Split potential from current-carrying in ~B

~B = ~BJ + ~∇φ , where
{

∆φ = 0
(∂φ/∂n̂)|∂V = (n̂ · ~B)|∂V

2 Split solenoidal from non-solenoidal in ~BJ

~BJ ≡ ~BJ,s +∇ψ , where
{

∆ψ = ~∇ · ~BJ
(∂ψ/∂n̂)|∂V = 0

all compatible with the condition n̂ · (~B − ~Bp)|∂V = 0 of Thomson’s
theorem. Substitute the above field decomposition into E = 1

2
∫
V B2dV

=⇒ E = Ep,s + EJ,s+EJ,ns + Emix (2)

Ep,s =

∫
V

B2
p,sdV

EJ,s =

∫
V

B2
J,sdV , EJ,ns =

∫
V
|~∇ψ|2dV

Emix =

∫
V

(~BJ,s · ~∇ψ + ~Bp,s · ~BJ) dV

• All terms in Eq. (2) are positively
defined, except for Emix

• For a perfectly solenoidal field, it is
Ep,s = Ep, EJ,s = EJ,
Ep,ns = EJ,ns = Emix = 0

• The decomposition is accurate to the
extent that, in Eq.(2), the two sides are
numerically equal, for arbitrary values of
divergence.



Mgm modifications

Mgm must be “modified” prior to extrapolation in order to
• improve the compatibility with FF assumption
• remove errors / inconsistencies
• reduce noise and smooth small scales (important for some methods)

Two commonly used strategies

1 Censoring: remove particular α values according to some criteria like continuity or
smoothness, essentially done by hand (preferred by GR users)

2 Preprocessing: use global constrains (preferred by MF and OM users)



Preprocessing
Minimize a global functional L(~Bobs) by modifying local values of the mgm such that some
necessary FF constrains are better satisfied (Wiegelmann et al., Sol.Phys. 2006)

• FF: From the force-free condition, ~∇ · (~B~B −~~IB2/2) = 0, integrated in the volume above the mgm, a
positive-definite functional can be derived

Lforce =
(∫

mgm
Bx Bz

)2
+
(∫

mgm
By Bz

)2
+
(∫

mgm
(B2

z − B2
x − B2

y )
)2

and analogous expressions Ltorque for the torque (requires flux balance).

• Smoothness: a smoothing functional Lsmooth can be devised (e.g., using Laplacian or median operators)

• Limiters: Stay as close as possible to observed values by minimizing Ldist =
∑

i=x,y,z
∫

mgm(Bi − Bobs
i )2

The different constrains are combined using Lagrangian multipliers µi ≥ 0 in a
global functional to be minimized

L = µ1Lforce + µ2Ltorque + µ3Ldist + µ4Lsmooth

Example of fixing µi

• For the minimum of L only the relative weight is important

• µ1 = µ2, no reason to do otherwise

• Fix µ3,4 as the lowest Lsmooth that keeps Ldist below noise level



How does PP work?

Positive and negative contribution to

the integrand of Fx for the TD

Lforce,x = F2
x , where Fx = −

∫
mgm

Bx Bz dxdy (3)

PP changes Bx and Bz locally in order to decrease Fx .
However, for a FF-compatible boundary, it is not the integrand

that is small, but its integral
=⇒ PP is inconsistent because it is a local adjustment to fulfil

a global constrain

And, analogously to the 180◦ problem, is not a well-posed
problem (the third one!)



Preprocessing

Two implementations (Wiegelmann et al., Sol.Phys. 2006, Fuhrmann et al., A&A 2007)
that differ for

• normalizations of Li , which reflect on different employed µi values

• different forms of Lsmooth

• Different strategies of minimization of L:
• (fast) iterative Newton method Bi −→ Bi − µdL/dBi in each node
• (slow) simulated annealing method for global minimum and inclusion of

errors’ map

See Fuhrmann et al., A&A 2011 for a comparison of the two implementations.

Difference between PP (red)

and nonPP (white) transverse

component in the core of

AR11158

However, preprocessing
• enforces global constraints by means of local modifications
• does not know anything about field lines’ connectivity
• limited to the first two moments of the Lorentz force (necessary conditions only)
• µi fix the relative importance of each Li , and need be determined case by case, or at

least instrument by instrument (Wiegelmann et al., Sol.Phys. 2012).

=⇒ It can produce FF-compatible BC that do not correspond to any 3D connectivity



Extrapolation of pp mgm
Compatibility of BC with FF

PP drastically reduces force and torque
=⇒ mgm is FF-compatible

Force Torque
no pp 0.127 0.133

pp 0.0004 -0.002

Hinode/SP mgm of AR10978 13 Dec 2007

E (1033 erg) (Ep,s Ej,s Ej,ns Emix)/E
no pp 1.56 1.03 0.10 0.05 -0.18

pp 1.63 0.85 0.13 0.07 -0.05
MF NLFFF of AR10978 13 Dec 2007. (ns)/(s):non/solenoidal,

(p):potential, (j): current

=⇒ PP is effective in improving the BC compatibility

Energy decomposition into solenoidal and
nonsolenoidal contributions

• Reduced ~∇ · ~B error: max (combined) 7%
(2%)

• Physical solution: E > Ep,s

• However, errors are small but comparable
with free energy

For all methods, the extrapolation of PP mgm yields
• More FF solutions (lower values of CWsin)
• Improved match with observations
• Higher free energies (with respect to non-PP)
• No pathological solutions with E < Epot

(see e.g., Schrijver et al., ApJ 2008)

=⇒ PP is usually beneficial for NLFFF extrapolations Extrapolation metrics (GR, OP, MF methods) and

GR fl of AR10930 (Schrijver et al., ApJ 2008)



Are small scales a problem?
One major difference between test and observed mgm is the presence of important flux on small
scales.

• PP increases small scales,
while, at the same time,

• improving extrapolation

Power spectra of the two-dimensional fields Bx (continuous line) and Bz

(dashed line), for the TD (orange), an PP mgm (red),and a non-PP mgm

(black)

Small scales are not the obstacle in extrapolation of observed mgm

may influence accuracy of reconstructions depending on the employed numerical scheme (see
Valori, Démoulin, Pariat, Masson, A&A 2013)



NLFFF extrapolation pipeline
Steps from the AR number to the coronal model:

1 Find spectropolarimetric measurements of suitable quality, size, and
cadence (not all instruments are the same)

2 Maps of the magnetic field: inversion of iso-τ spectropolarimetric
scans to obtain 2D maps of Blos , Bt , and ψ (NWP)

3 Removal of 180◦ ambiguity (NWP)

4 Heliographic projection and data rebinning on a Cartesian grid

5 Pre-processing, to improve the mgm compatibility with force-free
assumption (NWP)

6 Potential field (initial condition for NLFFF extrapolation)

7 NLFFF extrapolation, finally (NWP)

NWP: A mathematically not well-posed problem

Each of these steps involves models, codes, parameters, and choices, all of which may
severely impact on the extrapolated field

=⇒ Not a press-the-button tool: comparison with observations is mandatory



5. Examples of reconstruction in AR



Emergence and evolution of AR11024
Appearing as a tiny bipole on the east limb on 29 June 2009, at about -27◦ latitude

MDI LOS, saturated at 300G (movie at 500G), and time evolution of the emerging positive (—) and negative (- -) magnetic flux

• Positive leading, negative following
(dispersed) polarity, mid-scale mixed
polarity area in between

• Relatively quiet emergence until suddenly
main phase started on 4 July

• Large tilt of new emerging bipoles
• Dominanlty westward flow on positive

polarity, southward on negative Photospheric flow horizontal velocities (up to 3 km s−1) on

negative (left) and positive (right) polarities derived from LCT

analysis of NFI on 4 July from 12:00 to 13:00 UT



Emergence and evolution of AR11024

MDI LOS on 05 July 2009, saturated

at 300G

• Polarity elongation along the neutral line during the main
phase of emergence (starting on 4 July)
=⇒ "magnetic tongues" or "magnetic tails"

• from 7 July onward, again bipolar configuration (tongues
are retracted)

Interpretation of tongues as
• emergence of azimuthal field

(magnetically connected)
• indicate sign of helicity (in this

case H < 0) Tongues in a cartoon (Luoni et al. 2011) and in 3D MHD simulations

(Archontis and Hood 2010)



Sea-serpent emergence
At the time of main emergence the AR was observed by Hinode.

LOS SOT/SP overlaied onto MDI, and NFI LOS between 12 and 13UT

• within the Hinode FoV, 15%
excess of positive flux

• Small scale
cancellation/cohalescence of
opposite/like polarities

Interpreted as the emergence of serpentine field
lines (Schmieder et al., 2000): specific relation
between the motion close to the PIL, and Ω/U
type of field lines.

Cartoon (Vargas Domínguez et al. 2011) and linear

extrapolation (Pariat et al. 2004) of serpentine emergence



Coronal magnetic structure

EIS Si VII and Fe XII on 4 July at 11:52 UT,

in reverse colours, overlaied onto MDI

• Sunspot connection
• Internal brightening of tongues

connection

• XRT: reconnection fl in between sunspot connection
and tongues connection

• Interpreted as rearrangement of emerging magnetic
field by reconnection, from small to large scale
(e.g., Harra et al 2011),

• eventually leading to the final bipolar structure after
7 July.

XRT at 13:52 UT (movie: 11:50 - 12:30 UT)



Extrapolation properties

Input: SOT/SP level 2 vector magnetogram
4 July 11:58 until 12:34 UT

• with 180◦ ambiguity resolved with ME (Leka et al.,
2009)

• in heliographic plane, to remove projection effects
(AR latitude ' −27◦)

• preprocessed, to reduce forces and torques, with
max changes of ±150 G on Bx,y and ±50 G on Bz

• 293x424 nodes with 0.32" uniform resolution

Output: 3D, force-free model of the coronal magnetic field above it (∼ 100”), with

• σJ ≡
∫

dV |~J⊥|/
∫

dV |~J| = 0.11 =⇒ (relatively) good force-free

• < |fi | >= 3× 10−4, where fi ≡ (
∫

v dv ~∇ · ~B)/(
∫
∂v dv |~B|) =⇒ good divergence-free

=⇒ consistent force-free extrapolation4

4
Valori et al., Sol. Phys. 278 vol.1 (2012)



Large scale connectivity

Selected field lines starting in the umbra, in 3D view and in projection on the plane of the sky

Fls connect the sunspot almost exclu-
sively with the southern negative polar-
ity, matching in projection EIS Fe XII.

=⇒ original connection of the firstly
emerged sunspot pair.

Tilt of the AR possibly due to the emer-
gence of a non-planar flux rope

Right: EIS Fe XII in reverse colours overlaid on MDI



Connectivity between tongues

Selected field lines starting in the core of the positive tongue, in 3D view and in projection on the plane of the sky

Sheared field lines connect the elon-
gations of the polarities along the PIL,
matching in projection EIS Si VII.

=⇒ what were identified as tongues
(or tails) from photospheric signatures
are indeed magnetically connected
Right: EIS Si VII in reverse colours, overlaid on MDI



Serpentine field lines

PILΩ PILU PILΩ

NFI LOS between 12 and 13UT, and LCT flow map in the emerging area

• Ω-loops (resp., U-loops) above
PIL characterized by diverging
(resp., converging) flows

• Bald patch reconnection
creating dipped field lines
encompassing adjacent
polarities (Pariat et al., 2004)

=⇒ Sea-serpent emergence, indeed

O

Emerging sea-serpent associated with diverging motion (yellow), and

BP-reconnected field lines associated with converging motions (green),

starting above the green circle



From emergence to AR-wide

Tongue (red) and sea-serpent (yellow) field lines before reconnection, null point, and reconnected (green) field lines

• Emerging serpentine field lines (yellow) reconnect
at the null point with the tongue structure (red)

• forming the green (reconnected) field lines
matching XRT observations

• Null point (belonging to a QSL) position in between
matches peak location of RHESSI emission
between 12 and 12:30 UT

=⇒ Example of reconfiguration of emerging flux to
AR-scales by successive reconnections XRT (Ti poly) at 11:52UT in reverse colours

overlaid on MDI



From emergence to AR-wide

Combined panels on the left: EIS raster of spectral line width (a), Doppler velocities (b), intensity (c) of EIS Fe XII, SOT

magnetogram with EIS intensity isocontoures overlaid. Dashes on panel (b) indicates the two dual featuresassociated with nulls.

Right: selected field lines showing the two connected null points.

• Uncommon, strong blue/red shifted dual features in the AR core
• can be associated with reconnection outflows
• position of the dual features is matched by two connected null points

=⇒ NLFFF extrapolation yields detailed reconstructions which allow the interpretation
of complex observations



Global metrics

Energy: Em = 2.1× 1033 erg =
• 2.8× 1032 erg of free energy (13% excess of potential field energy)

=⇒ This would be enough to power even X-class flares, but only B and C class flares
were detected in the following 3 days.

Relative magnetic helicity: HM = −1.1× 1042 Mx2 =
• -0.05 in units normalized with the magnetic flux

=⇒ Opposite in sign to the statistical hemispheric rule, but in agreement with the
observed magnetic tongues.

The gauge-invariant, relative magnetic helicity and the free energy are computed with respect to
the potential field having the same distribution of normal field at all six boundaries of the
considered finite volume (extension to finite volumes of DeVore ApJ 539 (2000)).



Case study conclusions
Employing NLFFF extrapolation during the main phase of emergence of AR11024 we obtained a
validation, at all relevant scales simultaneously, of the current understanding of the flux
emergence process, as inferred from its manifestations at photospheric and low-coronal heights.

In particular, we found
• Connections of the sunspot pair and between magnetic tongues, and relate them to EIS

multi-temperature observations.
• Evidences of the sea-serpent emergence, and relate it to the emergence and flux

cancellation processes that are observed in the motion of small magnetic polarities.
• Locations where reconnection occurs in the corona, transforming short serpentine field

lines into long-range connectivity across the whole AR, and relate them to reconnection
signatures as captured by XRT, RHESSI, and by EIS scans showing localized dual
blue/red shifted velocity.

• Helicity and energy estimations coherent with observed evolution.

(Valori et al., Sol. Phys. 278 vol.1 (2012))

Conclusion: NLFFF modeling, in spite of its limitations, is able to provide a realistic
description of the coronal magnetic field.



Circular ribbon



Circular ribbon flare event
AR 11324 on October 22, 2011

Circular ribbon flare in several SDO/AIA lines

Typical signatures of null-point reconnection
• -ve parasitic within +ve polarity

• Co-temporal inner/outer brightening at the spine’s anchoring
locations with 1D elongation

• Semi-circular ribbons patches, counter-clock brightening
R1-R2-R3

Null-point cartoon of the assumed underline topology

Coronal null-point cartoon (Reid 2012) and a Null Point (Priest 2002)

Not entirely fitting the cartoon model
• Confined event

• Pre-flare brightening of inner structures

• Multi-peaked AIA light curves (not related to eruption as in Sun 2013)

• Post-flare loops above the null rather than under the fan

Next step: Magnetic field modeling
based on observations

AIA 1600 Å



MF structure: Global view

Preprocessed transverse field

⇒ Input: 1", disambiguated,
preprocessed SDO/HMI v-mgm
(PP of ~Btr limited to max(50%;100 G))

3D coronal MF : Output⇐
(40% perpendicular current and 9%
non-solenoidal field, typical of HMI)

Advanced tools for investigating flare/topology relation
NLFFF fan/spines qualitative structure

QSL topology study

Use Quasi-Separatrix Layers to
identify the MF’s topological elements

QSL: volumes of high values of the
connectivity gradients (squashing
factor Q), see e.g., Demoulin 2006

• Spines/fan global structure

• Unprecedented agreement between observed
brightening of

- QSL on circular ribbon at fan base
- inner and remote kernels with QSLs at

spines’ footpoints (!)
- QSL halo around outer spine and fan

Great matching, but what about flare evolution?



Flare evolution(∗)
Use NLFFF extrapolation to associate topological elements to AIA plasma emission

First stage: Activation
QSL analysis reveals the presence below the

fan under the null point of
• Complex QSL system with (5!) anchoring

on AIA-1600 Å brightening (IS to R1/R2)
• similar in structure to the AIA strands
• Surmounted by a flux rope (R1 to IS)

Inner QSLs and flux ropes, and AIA

Interpretation: Inner-QSL internal reconnection as possible flare driver

Second stage: Null-point reconnection

This event was non-eruptive =⇒ topology largely preserved
• northward, ⊥-PIL ribbon motion, co-temporal with
• AIA-131 Å (short) flux rope and (long) QSL/outer spine FLs

=⇒ Flux from inner to outer domains adding flux above the null

Interpretation: Post-flare loops due to reconnection between flux
rope and outer QSL field lines at the null (Pariat 2009) followed by

slip-running regime at the outer/inner spine QSL halos

(∗) CHEAT ALARM: FF equilibrium =⇒ just one snapshot, no evolution!



Flare evolution(∗)

SR reconnection at the null and

AIA light curves

EUV late phase: AIA light curves shows 3 groups of peaks at 16, 26
and 71 minutes after main flare, with delays from hot to cold lines

• Loops at 335/171/211 Å are co-spatial =⇒ same origin
(differently from Woods 2011)

• associate each group to a structure in the magnetic field
- flux rope
- R3 to outer spine
- R2 to outer spine

• within each group, cooler lines peak later
• among groups, shorter connections cool faster

Interpretation: Late EUV evolution due to cooling of post-flare loops
created during the main flare episode

Interpretation of the entire evolution of a complex, not
fully conventional circular flare ribbon event

(∗) CHEAT ALARM: FF equilibrium =⇒ just one snapshot, no evolution!



Summarizing

Brightening sequence in AIA 171, NLFFF, and FR

NLFFF matches observations with great accuracy

• Non-standard inner bright structure at the position of complex
QSL under fan (activation)

• Inner/outer brightening at the spine’s anchoring locations, and
at the embedding 1D-QSL

• Semi-circular ribbons patches at QSL positions

NLFFF helps gaining insight into complex observations

• This event was non-eruptive
=⇒ standard circular ribbon models are inadequate

• Usual null point reconnection is likely
=⇒ but reconnection adds flux above the null

• Cooling events of separate structures from main flare
=⇒ can explain multiple peaks in light curves

• Provides access to estimations of free energy and helicity

(Masson, Pariat, Valori et al., ApJ in preparation) Slip-running reconnection at the null

(top) and AIA light curves (bottom)

However, NLFFF is still not entirely quantitative because inaccuracies of
observations and methods are still unaccounted for



Helicity in a box: a new method
Aim: Gauge-invariant, relative magnetic helicity for application to finite domains

Method: use the freedom you have got

For the extrapolated ~B = ~∇ × ~A and the potential ~Bp = ~∇ × ~Ap fields, the relative helicity (Berger and Field
(1984), Finn and Antonsen (1985))

H =

∫
V

dV (~A + ~Ap) · (~B − ~Bp) (4)

is gauge invariant if (n̂ · ~B)|∂V = (n̂ · ~Bp)|∂V
=⇒ compute~Bp = ~∇φ by solving numerically ∆φ = 0 with the above Neumann conditions on all six boundaries
of V = (x1, x2)× (y1, y2)× (z1, z2). In order to compute ~A and ~Ap follow DeVore, ApJ 539 (2000), and choose

ẑ · ~Ap = ẑ · ~A = 0. (5)

Integrating directly ~Bp between z and z2 and ~B between z1 and z, obtain

~Ap = ~d + ẑ ×
∫ z2

z
dz′ ~Bp, ~A = ~Ap(x, y, z = z1)− ẑ ×

∫ z

z1
dz′ ~B, (6)

where dx = − 1
2
∫ y

y1
dy′ Bp,z (x, y′, z = z2) and dy = 1

2
∫ x

x1
dx′ Bp,z (x′, y, z = z2).

The limit z2 → ∞ (and no flux outside the magnetogram) reproduces the formulae in DeVore 2000, including
H =

∫
V dV ~A · ~B.

(Valori et al., Sol. Phys. 278 vol.2 (2012))

In addition to standard helicity flux computations (Démoulin, Pariat Adv. Space Res. 2009)



NLFFF Consortium



NLFFF Consortium

Series of comparative works using models and observed cases (2004-2015)

Schrijver et al., Sol.Phys. 2006 Low and Lou test case

• Semi-analytical test case, not quite solar-like (Low & Lou ApJ 1990)

• Successful reconstructions, OM fastest and best performing

• Updates: Amari et al., A&A 2006, Valori et al., 2007, Jiang & Feng ApJ 2012

Metcalf et al., Sol.Phys 2008 Numerical test case from flux rope insertion method

• Flux-rope structure in realistic environment (vanBallegooijen ApJ 2004)

• The FR is recovered from pp mgm, but numerical details of implementations impact on
reconstruction quality (OM best performing)

• With non-pp mgm the methods basically fail (but also extreme fine scales in α)

Schrijver et al., ApJ 2008 Application to the Hinode/SOT observations of AR10930

• Pre- and post-flare configurations

• Wide variety of solutions, depending on how each method processes the non-ff
boundary

• Relatively poor match with EUV loops, even for the best performing method (GR)

• Update: Canou & Amari ApJ 2010



NLFFF Consortium

DeRosa et al., ApJ 2009 Application to the Hinode/SOT observations of AR10953

• Embedding in larger LoS mgm

• Poor matching with STEREO-reconstructed loops (possibly not the best test)

• Unsatisfactory dependence of the solution on methods, boundaries, pp, embedding

• PP is necessary but not constrained enough, error maps should be incorporated

←−−−−−−−−
Higher resolution

DeRosa et al., ApJ 2015 Resolution dependence test on Hinode/SOT observations of
AR10798

• Spectra are re-binned at 2, 4, 8, 12, 16 times, then inverted

• Higher free energies with increasing resolution

• Significant spread of helicity values

• All methods change observations of comparable amounts



6. Conclusions



Outlook: Recent developments
Preprocessing codes

• Hα fibrils are believed to be tracers of the (projected) field orientation
Wiegelmann et al., 2008 extends the PP functional L by adding

µ5LHα =

∫
mgm

~̂z · (~B × ~H)

where ~H is a unitary direction of the Hα fibrils (where present), and that is minimized if ~Bhoriz ‖ ~H
• Maps of measurement errors can be directly used in PP codes that employ simulated annealing as minimization method.

First applications are underway

Extrapolation codes

• Maps of measurement errors can be used as confidence maps
• in iterative GR extrapolations that aim to average the positive and negative solutions (Amari et al., A&A 2010,

Whetland et al., ApJ 2011)
• in a ~W error matrix as an additional term in the OM functional L∫

mgm
(~B − ~Bobs) · ~W · (~B − ~Bobs)dxdy

which is then minimized during the extrapolation run (Wiegelmann et al., Sol.Phys. 2012)

• Spherical codes (OM: Wiegelmann et al., A&A 2007 GR: Amari et al., A&A 2013, Gilchrist & Wheatland Sol.Phys. 2014,
MF: Y. Guo et al., ApJ submitted

• Finite-β codes (OM: Wiegelmann & Neukirk A&A 2006 GR: Wheatland et al., Sol.Phys. 2012)



Conclusions

NLFFF extrapolation methods have been substantially improved in the last decade. They
• basically works, sometimes egregiously depending on the method, with FF compatible BC

• are approaching the full resolution of modern measurements, although maybe not yet on full disk

• have been shown to reproduce observed features in a number of cases (see also next talk)

• have been successfully used as a guide to interpret complex observations

However,
• the detailed way in which each method react on non-FF boundary is largely unexplored, hence the variability of solutions

from different methods stays unexplained

• vector magnetograms require a preprocessing in order to be used as BC, which is a blind modification of measurements

• and a properly constrained preprocessing remains somehow elusive, due to several different effects and source of errors

• Error maps are still not routinely available and very simple (limited to χ2 of best fitting profiles plus a confidence measure
of the 180◦ ambiguity removal)

The inclusion of error maps in the extrapolation process might be one possibility of alleviating the
problem, but a far more extensive exploitation inversion techniques is necessary:

“A single spectral line contains a richer information than is usually expected”
(Del Toro Iniesta & Ruiz Cobo, Sol.Phys 1996)



NLFFF extrapolation pipeline
Steps from the AR number to the coronal model:

1 Find spectropolarimetric measurements of suitable quality, size, and
cadence (not all instruments are the same)

2 Maps of the magnetic field: inversion of iso-τ spectropolarimetric
scans to obtain 2D maps of Blos , Bt , and ψ (NWP)

3 Removal of 180◦ ambiguity (NWP)

4 Heliographic projection and data rebinning on a Cartesian grid

5 Pre-processing, to improve the mgm compatibility with force-free
assumption (NWP)

6 Potential field (initial condition for NLFFF extrapolation)

7 NLFFF extrapolation, finally (NWP)

NWP: A mathematically not well-posed problem

Each of these steps involves models, codes, parameters, and choices, all of which may
severely impact on the extrapolated field

=⇒ Not a press-the-button tool: comparison with observations is mandatory
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