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The quantum chromodynamics phase diagram shows the phase transitions that can take place in matter at
different temperatures and densities. In this work we discuss the possibility that γ -ray bursts might result from a
phase change in the interior of a neutron star and calculate the energy released in the conversion of a metastable
star into a stable star. We consider several different initial and several different final configurations. Initial
metastable stars are taken as hadronic, hybrid, and quark stars with unpaired quarks; possible stable stars are
hybrid and quark stars, taken both with unpaired and paired phases to study the deconfinement phase transition
and normal quark matter–superconducting quark matter phase transition within a large number of relativistic
models used to describe compact stars. The models used for the hadron matter are the nonlinear Walecka model
and the quark-meson coupling model with and without hyperons. For the quark matter we have used the MIT
bag model, the bag model with paired quarks to which we refer as the color-flavor-locked phase model, and the
Nambu–Jona-Lasinio model. Within this mechanism we obtain energies of the order of 1050−1053 erg, accounting
for both long and short γ -ray bursts.
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I. INTRODUCTION

The possibility that a quark-gluon plasma (QGP) could
be formed in heavy-ion collisions [1–3] arose when quan-
tum chromodynamics (QCD) at finite temperature and high
densities became a topic of increasing interest owing to the
discovery of asymptotic freedom [4] about 30 years ago. In
cosmology, the relevant conditions for QGP formation occur
10 µs after the Big Bang; nuclear matter first appears after
about 1 ms. In laboratory searches for QGP, in large colliders
around the world (RHIC/BNL, ALICE/CERN, GSI, etc.),
experimentalists are trying to do the opposite: to convert
hadronic matter at sufficiently high temperatures into QGP.
The QGP diagram is shown in Fig. 1. In this case the conserved
quantities during the phase transition are the strangeness,
the isospin, the electric charge, and the baryonic number.
The Gibbs conditions for phase coexistence require that the
temperature, the pressure, and the chemical potentials in both
phases be the same. There are three chemical potentials that
determine the equation of state (EOS) of matter: the ones
associated with the three lightest quarks or other three baryon
chemical potentials, namely, for the proton, the neutron, and
the lambda hyperon. All baryon chemical potentials can be
written in terms of these three chemical potentials. The phase
transition from hadronic matter to a deconfined quark matter
is expected to take place at around a few times the nuclear
saturation density (at zero temperature), and this could occur
in the interiors of neutron stars [5,6]. Suggestions in the
literature on the interior composition of neutron stars can
be classified into pure hadronic matter (hadronic stars) with
or without hyperons [5,7,8]; a mixed phase of hadrons and
quarks (hybrid stars) [5,9–12]; a mixed phase of hadrons
and pion or kaon condensates [13–15] (also hybrid stars);
and deconfined quarks [14,16,17] (strange or quark stars).

According to Ref. [18], one possibility does not exclude the
others since the analysis of different astrophysical phenomena
associated with compact X-ray sources show that there are
stars with radii in the range of 10–12 km and also stars with
smaller radii, around 6–9 km. At temperatures of the order of
�0−40 MeV, which are the relevant temperatures in compact
stars [10], there are two possibilities for phase transitions, as
can be seen from the QGP diagram in Fig. 1. As the density
increases, hadron matter first converts into QGP or into either a
crystalline quark matter or a two-flavor superconducting phase,
and subsequently into a color-flavor-locked superconducting
phase. A possible transition from a hadron phase directly to
a color-flavor-locked phase, which describes superconducting
matter, has already been investigated in the context of hybrid
stars [19,20].

In this paper we discuss the possibility that γ -ray bursts
(GRBs) might be a manifestation of a phase change in the
interior of a neutron star. There are two classes of GRBs [21]:
The short bursts, which are generally hard (SGRBs) and the
long bursts, generally soft (LGRBs). They are distinguished
mainly by their duration and the energies released [22].
The long-soft γ -ray bursts occur in star-forming galaxies at
cosmological distances with a red shift of the order of z = 1
and they produce X-ray and optical afterglows. They are
believed to be associated with the explosion of massive stars
[23]. For a long time the energies associated with SGRBs, as
well as their sources, were unknown. Recently, accurate results
have been obtained for two SGRBs: GRB 050509B, located
at z = 0.225 [24], and GRB 050709, located at z = 0.16 [25].
These results seem to indicate that the SGRBs are caused by
stellar merging into final compact binary systems. The total
isotropic energy released in the first few hundred seconds is of
the order of 1050 erg, which is two or three orders of magnitude
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FIG. 1. QGP phase diagram.

smaller than seen in LGRBs. According to Ref. [26], LGRBs
are associated with supernovae of Type Ic, which present two
distinct kinds of bursts: Some generate soft and weak bursts
with no evidence for ultarelativistic jets and some generate
strong GRBs with ultrarelativistic jets. These bursts can be
explained by the conversion of a hadronic star into a quark
star, as proposed in Ref. [27], where an energy release of
1053 erg was calculated. This value is one order of magnitude
larger than the result of previous calculations [28–30], which
could not account for the energy needed to explain the most
energetic GRBs.

We make six points relevant to phase transitions in neutrons
stars. (1) For a phase transition in a stellar interior, strangeness
conservation is not required, charge conservation is restricted
to the neutral case, and β equilibrium has to be enforced.
The Gibbs conditions remain the same, but only two chemical
potentials determine the EOS, the neutron and the electron
ones. (2) Based on the Bodmer-Witten hypothesis [28,31–33]
that “strange matter” is the true ground state of all matter, it was
shown in Ref. [29] that once there is a seed of strange quark
matter inside a neutron star, the whole star converts to a strange
quark star. The quark matter front would absorb neutrons,
protons, and hyperons, liberating their quark constituents. This
conversion should take from 1 ms to 1 s [34], which agrees
with the typical duration of a SGRB. (3) In Ref. [27] the
energy released in the conversion of neutron (hadronic) stars
to strange stars was calculated and shown to be of the order of
(1−4) × 1053 erg. For the hadronic stars two possible EOSs
were considered: one with protons and neutrons only and
another one with the eight lightest baryons. For the strange
quark stars, the usual MIT bag model was used to describe
quark matter and different choices for the bag parameter
were used. (4) In Refs. [18,35] it was found that above a
threshold value of the gravitational mass, a pure hadronic star
is metastable to a conversion into a hybrid or quark star. (5) In
Ref. [36] the energy released in the conversion of a hadronic
star into a hybrid or quark star with superconduction phase was
estimated to be of order 1053 erg. (6) In Refs. [35] and [18] the
finite-size effects between the deconfined and confined phases
are taken into account and the mean life of the metastable star
is calculated. In the first paper β equilibrium is considered

during the phase transition; in the second case it is supposed
that only strong forces act during the phase transition.

Here we generalize the approach of Ref. [27], in particular,
considering the stellar conversions in which baryon number
is conserved. We are not concerned with the lifetime of
the star but are interested in the energy liberated during
the stellar conversion. We calculate the energy released in
various possible conversions from a metastable to a stable
star and check whether they can account for LGRBs or
SGRBs. The authors of Ref. [27] considered conversions from
a metastable star into a stable star, with the stable configuration
assumed to be a hybrid or quark star. Here we consider several
different initial and several different final configurations. Initial
metastable stars are taken as hadronic, hybrid, and quark stars
with unpaired quarks and possible stable stars are hybrid and
quark stars, taken both with unpaired and paired phase to
study the deconfinement phase transition and normal quark
matter–superconducting quark matter phase transition within
a large number of relativistic models used to describe compact
stars.

In Sec. II of the present paper we outline the formalism
used in our calculations, in Sec. III the results are shown and
discussed, and in Sec. IV the conclusions are drawn.

II. FORMALISM

In this section we give a brief summary of the models
used in our calculations. More information about the general
formalism can be obtained from the references mentioned
in the introduction. The models used for the hadron matter
are the nonlinear Walecka model (NLWM) [37], in which
we consider the GM1 parametrization of [38], except when
the δ mesons are considered in which case we use the
parametrizations discussed in Ref. [11], and the quark-meson
coupling (QMC) model [39]. For the quark matter we have
used the Nambu–Jona-Lasinio (NJL) model [40], the MIT bag
model [41], and the bag model with paired quarks to which
we refer as the color-flavor-locked (CFL) phase model [19].

A. Hadronic phase

1. Nonlinear Walecka model

The Lagrangian density of the NLWM with δ mesons and
hyperons reads [37,38,42]

L =
∑
B

ψ̄B[γµ(i∂µ − gvBV µ − gρBt · �bµ)

− (M − gsBφ − gδBt · �δ)]ψB

+ 1

2

(
∂µφ∂µφ − m2

s φ
2 − 1

3
κφ3 − 1

12
λφ4

)

− 1

4

µν


µν + 1

2
m2

vVµV µ − 1

4
�Bµν · �Bµν

+ 1

2
m2

ρ
�bµ · �bµ + 1

2
(∂µ

�δ∂µ�δ − m2
δ
�δ2 ), (1)

with
∑

B extending over the eight baryons and where giB and
mi are, respectively, the coupling constants of the mesons
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i = s, v, ρ, δ with the hyperons and their masses. Self-
interacting terms for the σ meson are also included; κ and λ de-
note the corresponding coupling constants and t is the isospin
operator. The set of constants is defined by gsB = xsBgs, gvB =
xvBgv, gρB = xρBgρ, and gδB = xδBgδ , and xsB, xvB, xρB ,
and xδB are equal to 1 for the nucleons. We have chosen
xs = 0.7 and xv = xρ = 0.783 and assumed that the couplings
to the  and � are equal to those of the � hyperon [5,38]. For
consistency we have taken xδ = xs [11].

2. QMC model

In the QMC model [39], the nucleon in nuclear medium
is assumed to be a static spherical MIT bag in which quarks
interact with the scalar and vector fields, σ, ω, and ρ, and
these fields are treated as classical fields in the mean field
approximation. The quark field, ψq(x), inside the bag then
satisfies the equation of motion[

i /∂ − (
m0

q − gq
σ σ0

) − γ 0
(
gq

ωω0 + 1
2gq

ρτ3qb03
)]

ψq(x)

= 0, q = u, d, s, (2)

where σ0, ω0, and b03 are the classical meson fields for σ , ω,
and ρ mesons. m0

q is the current quark mass, τ3q is the third
component of the Pauli matrices, and g

q
σ , g

q
ω, and g

q
ρ are the

quark couplings with σ, ω, and ρ mesons, respectively. The
energy of a static bag describing baryon B, consisting of three
ground-state quarks, can be expressed as

E
bag
B =

∑
q

nq


q

RB

− ZB

RB

+ 4

3
πR3

BBB, (3)

where 
q ≡
√

x2
q + (RBm∗

q)2,m∗
q = m0

q − g
q
σ σ, RB is the bag

radius of the baryon B,ZB is a parameter that accounts for
zero-point motion, and BB is the bag constant. The set of
parameters used in the present work is given in Ref. [12] for
the bag value B

1/4
B = 210.854 MeV, m0

u = m0
d = 5.5 MeV, and

m0
s = 150 MeV. The effective mass of a nucleon bag at rest is

taken to be M∗
B = E

bag
B . One can then compute the total energy

density and the pressure including leptons and hyperons.

B. Quark phase

1. The Nambu–Jona-Lasinio model

The SU(3) version of the NJL model [40] includes most
of symmetries of QCD, including chiral symmetry, and its
breaking, which is essential in treating the lightest hadrons.
The NJL model also includes a scalar-pseudoscalar interaction
and the t’ Hooft six-fermion interaction that models the axial
U(1)A symmetry breaking. It is defined by the Lagrangian
density

L = q̄ ( iγ µ ∂µ − m)q + gS

8∑
a=0

[ ( q̄ λaq )2

+ ( q̄ i γ5 λaq )2 ] + gD {det [q̄i (1 + γ5) qj ]

+ det [q̄i (1 − γ5) qj ]}, (4)

where q = (u, d, s) are the quark fields and λa ( 0 � a � 8 )
are the U(3) flavor matrices. The model parameters are m =
diag (mu ,md ,ms ), the current quark mass matrix (md = mu),
the coupling constants gS and gD , and the cutoff in three-
momentum space, �.The NJL model is valid only for quark
momenta smaller than the cutoff �.

The set of parameters is chosen to fit the values in
vacuum for the pion mass, the pion decay constant, the kaon
mass, and the quark condensates. We consider the following
set of parameters [43,44]: � = 631.4 MeV, gS �2 = 1.824,
gD �5 = −9.4, mu = md = 5.6 MeV, and ms = 135.6 MeV,
which are fitted to the following properties: mπ = 139 MeV,
fπ = 93.0 MeV, mK = 495.7 MeV, fK = 98.9 MeV, 〈ūu〉 =
〈d̄d〉 = −(246.7 MeV)3, and 〈s̄s〉 = −(266.9 MeV)3.

2. The MIT bag model

The MIT bag model [41] has been extensively used to
describe quark matter. In its simplest form, the quarks are
considered to be free inside a bag and the thermodynamic
properties are derived from the Fermi gas model. The energy
density, the pressure, and the quark q density, respectively, are
given by

E = 3 × 2
∑

q=u,d,s

∫
d3p

(2π )3

√
p2 + m2

q + Bag, (5)

P = 1

π2

∑
q

∫
dp

p4√
p2 + m2

q

− Bag, (6)

ρq = 3 × 2
∫

d3p

(2π )3
, (7)

where 3 stands for the number of colors, 2 stands for the
spin degeneracy, mq are the quark masses, and Bag repre-
sents the bag pressure. We use mu = md = 5.5 MeV,ms =
150.0 MeV, and different choices for the Bag parameter.

3. Color-flavor-locked quark phase

Recently, many authors [19] have discussed the possibility
that the quark matter is in a color-superconducting phase,
in which quarks near the Fermi surface are paired, forming
Cooper pairs, which condense and break the color gauge
symmetry. At sufficiently high density the favored phase is
called CFL, in which quarks of all three colors and all three
flavors are allowed to pair. In this model, the quark matter
is treated as a Fermi sea of free quarks with an additional
contribution to the pressure arising from the formation of the
CFL condensates.

The CFL phase can be described with the thermodynamic
potential


CFL(µq,µe) = 
quarks(µq) + 
GB(µq,µe) + 
l(µe), (8)
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with µq = µn/3, where µn is the neutron chemical potential,
and


quarks(µq) = 6

π2

∫ ν

0
p2dp(p − µq) + 3

π2

×
∫ ν

0
p2dp

(√
p2 + m2

s − µq

) − 3�2µ2
q

π2
+ B,

(9)

with mu = md = 5 MeV and ν = 2µq −
√

µ2
q + m2

s /3,


GB(µq,µe) is a contribution from the Goldstone bosons
arising from chiral symmetry breaking in the CFL phase [19],


GB(µq,µe) = −1

2
f 2

π µ2
e

(
1 − m2

π

µ2
e

)2

, (10)

where f 2
π = (21 − 8 ln 2)µ2

q/36π2, and m2
π = ms(mu + md )

× 3�2/π2f 2
π ,
l(µe) is the negative of the leptonic pressure,

and the quark number densities are equal (i.e., ρu = ρd = ρs =
ν3 + 2�2µq/π

2.) In these expressions �, the gap parameter,
is taken to be 100 MeV.

The electric charge density carried by the pion condensate
is given by

QCFL = f 2
π µe

(
1 − m4

π

µ4
e

)
. (11)

For the case of strange stars, charge neutrality has to be
enforced. Hence, we take µe in these expressions so that QCFL

vanishes. We note that the CFL phase model is a variant of
the MIT bag model in which the quarks are allowed to pair.
Hereafter we refer to the model where pairing is present as the
CFL phase model.

C. β equilibrium

After deleptonization takes place, the charge neutrality
condition has to be enforced. Moreover, since the time
scale of a star is effectively infinite compared to the weak
interaction time scale, strangeness conservation is violated.
The strangeness quantum number is therefore not conserved
in a star. In a star with hadron matter, the net strangeness
is determined by the condition of β equilibrium, which for
baryon B is then given by µB = µn − qBµe, where µB is the
chemical potential of baryon B and qB its electric charge. Thus
the chemical potential of any baryon can be obtained from the
two independent chemical potentials µn and µe of neutron and
electron, respectively.

In a star with quark matter µs = µd = µu + µe and
µe = µµ.

D. Hybrid stars

To describe hybrid stars, a mixed phase with hadrons and
quarks is built, in which charge neutrality is not imposed
locally but only globally [5,45]. This means that the quark
and hadronic phases are not neutral separately, but rather, the
system will prefer to rearrange itself so that

χρQP
c + (1 − χ )ρHP

c + ρl
c = 0,

where ρiP
c is the electric charge density of the phase i, χ is

the volume fraction occupied by the quark phase, (1 − χ )
is the volume fraction occupied by the hadron phase, and ρl

c is
the electric charge density of leptons. We consider a uniform
background of leptons in the mixed phase since Coulomb
interaction has not been taken into account. According to the
Gibbs conditions for phase coexistence, the baryon chemical
potentials, temperatures, and pressures have to be identical
in both phases; µHP = µQP, THP = TQP, and PHP(µHP, T ) =
PQP(µQP, T ), reflecting the needs of chemical, thermal, and
mechanical equilibrium, respectively. As a consequence, the
energy density and total baryon density in the mixed phase
read

〈E〉 = χEQP + (1 − χ )EHP + E l (12)

and

〈ρ〉 = χρQP + (1 − χ )ρHP. (13)

III. RESULTS

Given the EOS, the next step is to solve the Tolman-
Oppenheimer-Volkoff equations [46]. The main properties of
the stars, including their gravitational and baryonic masses,
their radii, and central energy densities are then computed.

Following Ref. [27] we assume that the conservation of
the baryonic number can be approximated by the conservation
of the baryonic mass of the star, where the baryonic mass
is the mass of the equivalent number of baryons if the
star was dissociated into neutrons at infinity. It is obtained
by integrating the baryon number density over the volume
and multiplying by the neutron mass, as in equation (8.28)
of Ref. [5]. The quark phase will be a more compressible
phase and therefore the radius of a deconfined quark star
is smaller than the radius of a neutron star with equivalent
baryon number, as shown in Ref. [14]. The energy released is
determined by the change in the gravitational energy during
the conversion. Thus we identify the energy released as �E =
[MG(MS) − MG(SS)], where MG(MS) is the gravitational
mass of the metastable star and MG(SS) is the gravitational
mass of the stable star. In c.g.s. units, this energy is given by

�E = [(MG(MS) − MG(SS))/M�]×17.88×1053 erg, (14)

where M� is the solar mass. Notice that for �E to be positive,
the gravitational mass of the metastable star, at fixed baryonic
mass, has to be larger than the gravitational mass of the stable
star.

In Table I we present a series of model hadronic, hybrid, and
quark stars and calculate all possible released energies in the
conversion mechanism. There are many works on the different
types of stars, some of them mentioned in the introduction
and many of them described in detail in Refs. [5,6]. In the
table we just cite the references from which the calculation
of the stellar gravitational and baryonic masses were taken.
The typical gravitational mass versus radius plots for some
of the hadronic, hybrid, and quark stars are given in Fig. 2.
Only bare quark stars are considered in this paper. The value
of the bag parameter is given beside the quark model; for
instance, MIT 160 stands for the MIT bag model with a bag
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TABLE I. Metastable, stable stars, and released energy.

MS Model (MS) SS Model (SS) Mb (M�) �E (1053 erg) Figures

hadronic [11] NLWMδ (p,n) quark [16] MIT 160 1.56 1.91 3
hadronic [11] NLWMδ (p,n) quark [16] MIT 180 1.25 0.081 3
hadronic [11] NLWMδ (8b) quark [16] MIT 160 1.56 0.94 3
hadronic [11] NLWMδ (8b) quark [16] MIT 180 — <0 3
hadronic [11] NLWMδ (p,n) quark [16] CFL 160 1.56 3.73 3
hadronic [11] NLWMδ (8b) quark [16] CFL 160 1.56 2.84 3
hadronic [8] NLWM (8b) quark [16] MIT 160 1.56 0.95 3
hadronic [8] NLWM (8b) quark [16] MIT 160 1.8 1.34 3
hadronic [8] NLWM (8b) quark [16] CFL 160 1.56 2.84 3
hadronic [8] NLWM (8b) quark [16] CFL 160 2.11 3.95 3
hadronic [11] NLWMδ (p,n) quark [17] NJL — <0 3
hadronic [11] NLWMδ (8b) quark [17] NJL — <0 3
hadronic [12] QMC (p,n) quark [16] MIT 160 1.56 1.15 4
hadronic [12] QMC (8b) quark [16] MIT 160 1.56 1.20 4
hadronic [12] QMC (p,n) quark [16] CFL 160 1.56 2.97 4
hadronic [12] QMC (8b) quark [16] CFL 160 1.56 3.01 4

hadronic [12] QMC (p,n) hybrid [15] QMC+kaons 1.56 0.088 5
hadronic [12] QMC (8b) hybrid [15] QMC+kaons — 0.0 5
hadronic [11] NLWMδ (8b) hybrid [11] NLWMδ(8b)+MIT 180 1.56 0.071 6
hadronic [8] NLWM (8b) hybrid [47] NLWM(8b)+MIT 170 1.56 0.42 6
hadronic [8] NLWM (8b) hybrid [47] NLWM(8b)+MIT 160 1.56 0.58 6
hadronic [8] NLWM (8b) hybrid [47] NLWM(8b)+CFL 200 1.56 0.008 6
hadronic [8] NLWM (8b) hybrid [9,10] NLWM(8b)+NJL 1.52 0.027 6

hybrid [11] NLWMδ(8b)+MIT 180 quark [16] MIT 160 1.56 0.92 7
hybrid [11] NLWMδ(8b)+MIT 180 quark [16] CFL 160 1.56 2.75 7
hybrid [9] NLWM(8b)+MIT 170 quark [16] MIT 170 — <0 7
hybrid [9] NLWM(8b)+MIT 160 quark [16] MIT 160 1.56 0.46 7
hybrid [12] QMC(8b)+CFL 200 quark [16] CFL 160 1.56 2.89 7
hybrid [12] QMC(8b)+CFL 200 quark [16] CFL 160 1.8 3.31 7
hybrid [11] NLWM(8b)+NJL quark [17] NJL — <0 7
hybrid [47] NLWM(8b)+CFL 200 quark [16] CFL 160 1.56 2.90 7

quark [16] MIT 160 quark [16] CFL 160 1.56 1.82 4

parameter Bag1/4 = 160 MeV. (p,n) means that only protons
and neutrons are considered in the EOS and (8b) means that
the eight lightest baryons are taken into account. The numbers
associated with the figures displaying the baryonic versus

FIG. 2. Mass to radius relation for the families of stars described
by some of the hadronic, hybrid, and quark stars described in the text.

gravitational masses of the stars considered in each case are
also shown in Table I.

To obtain �E we consider stars with baryonic masses of the
order of 1.56M�, which correspond to metastable stars with

FIG. 3. Gravitational vs baryonic masses for the families of stars
described by hadronic and quark matter.
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FIG. 4. Gravitational vs baryonic masses for the families of stars
described by hadronic and quark matter.

gravitational masses of the order of 1.4M�, except in a few
cases where the maximum baryonic masses were smaller or
too close to this value. After conversion the gravitational mass
of the stable star is, of course, smaller. In most cases we could
have chosen larger values for the fixed baryonic mass and
they would yield �E values larger than but of the same order
of magnitude as the ones shown in Table I. Some examples
are also shown in the table. For the EOSs studied, we could
have chosen hadronic stars with larger baryonic masses but
they would decay into black holes, releasing larger amounts of
energy than given in the table. Notice that this choice is limited
by the value of the maximum baryonic masses obtained with
each EOS and these values generally lie between 2M� and
2.5M�.

It is worth pointing out that we choose the bag parameter
for the MIT and CFL phase models as Bag1/4 = 160 MeV
because, according to Ref. [20], quark matter in β equilibrium
has an energy per baryon smaller than the neutron mass only for
144 MeV � Bag1/4 � 162 MeV, in which case a star consisting
only of quarks is possible. For larger Bag values, quarks can
only exist in the core of the neutron stars. Smaller Bag values
would predict u, d-quark matter more stable than iron. For
the CFL phase model, it is possible to obtain strange stars

.
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FIG. 5. Gravitational vs baryonic masses for the families of stars
described by hadronic and hybrid matter.

FIG. 6. Gravitational vs baryonic masses for the families of stars
described by hadronic and hybrid matter.

within a larger range of Bag values for matter in β equilibrium.
Nonetheless, in the same reference, the authors suggest that
a pre-existing phase with quark matter not in β equilibrium
has to exist for a short period during the deconfinement phase
transition. In this case Bag1/4 < 176 MeV for 1.6M� stars. We
have considered Bag1/4 > 160 MeV in some cases to verify
whether a conversion would take place when the restrictions
mentioned here were not obeyed. In all calculations with
the CFL phase model, the � parameter was taken equal to
100 MeV. The dependence of the EOS of strange quark matter
on � has been studied in Refs. [19,20]. For a given Bag value
if � is not large enough, unpaired quark matter is more stable
than quark matter in the CFL phase [20].

We first analyze the results obtained when the metastable
star is hadronic and the stable star is a strange quark star. The
results depend sensitively on the models chosen for each kind
of star, but they are of the order of 1053 erg, the only exception
coming from a case where the maximum baryonic mass of
the considered star (MIT 180) was too low and hence would
not correspond to a stable star in an unpaired phase with a
gravitational mass of �1.4M�.

Next we consider the deconfined quark matter described
within the NJL model. This model allows us to investigate in
which way the correct description of the chiral symmetry may

FIG. 7. Gravitational vs baryonic masses for the families of stars
described by hybrid and quark matter.
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affect the star properties. When the NJL model is chosen to
describe the quark matter, the energy is negative, and hence
conversion is not possible.This is due to the large constituent
quark masses, which only approach the current quark masses
at high densities and generate a lower binding energy than
in the hadronic star. In fact, it was shown in Ref. [48] that
for reasonable properties of the pion and kaon the NJL does
not predict matter more stable than iron at zero temperature.
Within the NJL model the quark EOS is more stable than
the hadronic one at quite high densities. In Ref. [9] we have
also shown that the effective bag constant in the NJL model is
larger than (160 MeV)4 for ρ > 2ρ0, where ρ0 is the saturation
density.

A negative value of �E is also obtained if a large value
for the bag parameter is taken either in the MIT or in the CFL
phase model. Similar values for �E were also mentioned
in Ref. [27]. If a star with only protons and neutrons in the
NLWM is considered, when it converts to a strange quark star,
the energy released is always larger than in the conversion of a
hadronic star with all eight lightest baryons, because if density
is high enough hadronic matter with hyperons is more stable
than proton-neutron hadronic matter. If the star is described
by the QMC model, stars with proton and neutrons only and
stars with eight baryons yield very similar results. It has been
already discussed in Ref. [12] that QMC predicts a softer
EOS than NLWM, and including hyperons within the QMC
approach does not affect much the behavior of the EOS.

The importance of including the scalar isovector virtual
δ(a0(980)) field in hadronic effective field theories when
asymmetric nuclear matter is studied [42] has been stressed.
Its presence introduces in the isovector channel the structure
of relativistic interactions, where a balance between a scalar
(attractive) and a vector (repulsive) potential exists. The δ

and ρ mesons give rise to the corresponding attractive and
repulsive potentials in the isovector channel. The introduction
of the δ meson mainly affects the behavior of the system at high
densities, when, owing to Lorentz contraction, its contribution
is reduced, leading to a harder EOS at densities larger than
∼1.5ρ0 [42]. However, the influence of the δ meson in the
present calculation is negligible since results with the NLWMδ

and NLWM are practically identical within the precision of our
calculations, although the EOSs are somewhat different owing
to the different parametrizations used.

Generally speaking, the value of the released energy
depends on the choice of the bag parameter used in the
EOS of the quark matter. Larger �E values are obtained for
smaller bag parameters and, within the same description, larger
amounts of energy are released from the decay of more massive
baryonic stars.

We now consider conversions from hadronic to hybrid
stars, for which we have found much lower released energies,
of the order of 1050−1052 erg. The inclusion of hyperons
softens the EOS at high densities but not so much as the
softening from deconfinement. A conversion from a hadronic
to a hybrid star with kaons is possible, but the released energy
is only measurable for the case without hyperons. The neutron
star charge neutrality favors kaon condensation because the
neutrons at the top of the Fermi sea decay into protons plus
electrons, which, in turn, have an increase in the energy as the

density increases. When the electron chemical potential equals
the effective kaon mass, the kaons are favored in helping with
the conservation of charge neutrality because they are bosons
and can condense in the lowest energy state. This process is
not so effective if hyperons are included.

The choice of the parameters affects the size of the core
of quarks in a hybrid star: the smaller the bag parameter, the
larger the core. As a result, we find that the smaller the bag
parameter, the larger the energy released in the conversion of
hadronic to hybrid stars.

We also consider conversions from a hybrid star to a quark
star. When the quark star is described by matter in the CFL
phase, the released energy is two to three times larger than if
a conversion takes place to a quark star with unpaired quarks.
The energy released is of the same order of magnitude as
obtained for a conversion of a hadronic to a quark star if the
Bag value for the quark star is taken smaller than the one used
for the hybrid star.

Finally, the conversion from a quark star with unpaired
quarks to another one with a paired phase seems also to
be possible, as a phase transition from a QGP to a color
superconducting phase is possible in a QCD phase diagram.
The energy released is of the order of 1053 erg and depends on
the choice of the Bag and � values.

IV. CONCLUSIONS

We have calculated the energy released in the possible
conversion of a metastable compact star into a more stable
compact star, in the framework of different relativistic mean-
field models for the hadronic and the quark matter. The results
depend heavily on the parametrizations considered for the
quark matter. Hadronic models are fitted to properties of
nuclear matter at saturation. We have considered two different
types of hadronic models: the NLWM and the QMC. The quark
EOS was described within the NJL model and the MIT bag
model. In the last case both an unpaired and a CFL phase have
been considered. The parameters of the NJL model have been
fitted to meson properties. For the MIT bag model we have
tested different parametrizations.

Our results indicate that this kind of conversion mechanism
from a metastable to a stable star releases energies of the order
of 1050−1053 erg, accounting for GRBs in general.

According to Refs. [24,25], the origin of SGRBs is certainly
different from the origin of LGRBs. Notice, however, that the
conclusions drawn in Ref. [25] are based on the present sample
of bursts and their associated galaxy redshift measurements.
Bursts coming from a source with a larger redshift would have
a correspondingly larger intrinsic energy.
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