Solar B - EIS

MULLARD SPACE SCIENCE LABORATORYUNIVERSITY COLLEGE LONDONAuthor: A James

SOLAR B - EIS RISK ASSESSMENT

Document Number: MSSL/SLB-EIS/AD005.09

21st July 2003

Author:	A. James	Date:	21 st July 2003
Authorised By	A. James	Date:	25 th July 2003
Distributed:	A. James	Date:	25 th July 2003

Distribution:

EIS Science EIS Tech

-		

CHANGE RECORD

ISSUE	DATE	PAGES CHANGED	COMMENTS
01	9 June 2000	All New	Document re-issued in new numbering system. A major review of risks has been conducted in preparation for the EIS UK PDR
02	04 July 2000	3,4,5,6,7	Minor updates to paras 2 & 3. Par 4.1, EM changed to PM. Minor editorial changes to par 4.2. Par 5.1. addition of OE6.
03a	03 Oct 2000	4 5,6,7,8,9 7	Early release for PPARC Steering Committee. EM changed to PM and STM changed to MTM/TTM in PE6. Update of all risks (changed ones are shaded) and addition of update timetable in Section 3. New Risks: PS19 added
04	09 Feb 2001	6,7,8,9,10	Update of all risks (changed ones are shaded) and addition of update timetable in Section 3.
05	30 May 2001	5 7	Update Recorded PS2 Updated to reflect change in EIS wavelengths PS11 Radiator – probability reduced to 1 PS9 reduced to 4
		8 10	PS16 reduced to 2 Add risk PS20 – mounting of ACTELs Add risk PS21 – CCD voltages Add risk OS10 – CCD contamination
06	25 Jan 02	none	Temporary release to PMs prior to update, highlighting each institutes ownership of risks.
07	8 Jul 02	6	Major updates prior to UK CDR: PE8.1 relating to PM delivery schedule removed PE8.2 relating to MTM delivery schedule removed Other interface risks reduced due to PM and MTM delivery

0.0	20.0.1.02	0	
08	29 Oct 02	Cover	Updated distribution list to e-mail distribution
		7	PS7 reduced from 5 to 4 as procedures are defined
		10	OE6 risk reduced to 2 after statements from system
			side at CDR.
		11	OS2 reduced from 99 to 2 following assessment at
			NRL
		6	PE4 and 4.2 reduced from 2 to 1 following
			MTM/TTM system tests
		6	PE6 all reduced as MTM/TTM and PM both
			completed
		6	As above for PE7 except PE7.4
		8	PS2 reduced from 6 to 2 with delivery of 'in spec'
			optics
		8	PS3 and PS4 reduced for same reason as above
		8	PS9 reduced in light of FPP experience at MSSL
		11	OE4 reduced to 1 following extensive testing of
			commanding on PM boards
		12	OS4 removed statement of redundant system for
			grating movement
09	21 Jul 03	All Pages	Complete update of ALL existing risks – no new
			risks added.

MSSL/SLB-EIS/AD005.09

CONTENTS

1	1 SCOPE	5
2	2 APPLICABLE DOCUMENTS	5
3	3 DISCUSSION	5
	3.1 Table Update	6
4	4 PROGRAMMATIC RISK	7
	4.1 System level (PE)	7
	4.2 Sub-system level (PS)	9
5	5 OPERATIONAL RISK	12
	5.1 System Level (OE)	12
	5.2 Sub-system level (OS)	13

1 SCOPE

This document constitutes the central element of the Solar-B EIS Risk Management Process. Here programmatic (i.e. risks to the delivery for flight of the EIS instrument within the schedule and budget constraints) and operational risks (i.e. risks to the quality and in-flight performance of the delivered instrument) are covered.

Risks are characterised in terms of their nature, likelihood, origin and ownership.

2 APPLICABLE DOCUMENTS

MSSL/SLB-EIS/SP007 MSSL/SLB-EIS/SP011 EIS-sys-eng-wbs MSSL/SLB-EIS/AD004 EIS Science Requirements EIS System Definition EIS Work Break-down Structure Management Plan

3 DISCUSSION

This document contains a risk analysis for the Solar-B EUV Imaging Spectrometer (EIS) at system and sub-system level. Its purpose is to record the sources of risk and their degree for EIS and its subsystems, and the means to reduce them to acceptable levels. Operational and Programmatic risks are considered.

The probability of risks is described in a qualitative way using the following Scheme:

Term	Notation
Impossible	0
Very unlikely	1
Unlikely	2
Moderately Unlikely	4
Moderately Probable	6
Probable	8
Very Probable	9
Certain	10
Unknown	99

Risks are numbered for reference, according to type.

- PE : Programmatic EIS (system or Mission) risk
- PS : Programmatic Subsystem risk
- OE : Operational (i.e. post-launch) EIS (system or Mission) risk
- OS: Operational Subsystem risk.

Each of the above risk types are described in separate section of this document.

The risk <u>Category</u> is the WBS code of the origin of the risk. 1000 = EIS instrument, 0000 = Solar-B mission.

<u>Ownership</u> indicates the institute that will be responsible for management of the risk. Within any Institute it is required that an individual take ownership of the risk.

3.1 Table Update

As detailed in the management plan, now that the PDR has happened, a risk register will be implemented to record the progress of the risk management process on a regular basis. This document, however, will still act a useful assessment and summary of outstanding risks and will highlight any new risks which have come to light. As part of the risk management process this document will be updated on a regular basis, once every 3 months. The table below reflects the dates when these updates will occur.

Document release number	Expected	Released	Notes
	Release	Date	
MSSL/SLB-EIS/AD005.03	End Oct 00		5.03a Early version for PPARC SC on 3/10/00
MSSL/SLB-EIS/AD005.04	End Jan 01	9 Feb 01	
MSSL/SLB-EIS/AD005.05	End Apr 01	30 May 01	
MSSL/SLB-EIS/AD005.06	End Jul 01	25 Jan 02	Re-release of previous version
	End Oct 01		
	End Jan 02		
	End Apr 02		
MSSL/SLB-EIS/AD005.07	End Jul 02	8 Jul 02	for CDR
MSSL/SLB-EIS/AD005.08	End Oct 02	29 Oct 02	Scheduled release
	End Jan 03		
	End Apr 03		
MSSL/SLB-EIS/AD005.09	End Jul 03	21 Jul 03	Full update for Steering Committee
MSSL/SLB-EIS/AD005.10	End Oct 03		
MSSL/SLB-EIS/AD005.11	End Jan 04		
MSSL/SLB-EIS/AD005.12	End Apr 04		
MSSL/SLB-EIS/AD005.13	End Jul 04		
MSSL/SLB-EIS/AD005.14	End Oct 04		

4 PROGRAMMATIC RISK

4.1 System level (PE)

Sources of programmatic risk to the project as a whole are considered first.

Category	Element	Risk #	Prob	Owner	Event	Effect	Management	Notes	
0000	Solar-B	PE3	1	ISAS	Launch Delay	Extra costs in supporting s/c activities	Revise schedule Re-costing in progress	Has now occurred twice. Considered unlikely to occur again. Launch delayed again, now 2006. FM build is so far advanced that no further delay is envisaged.	
1000	EIS	PE4	1	MSSL	Incompatibility of sub-system interfaces at pre delivery integration	Failure to integrate hardware or software. Delay and/or additional costs of re-work	Early integration checks have oc	nanagement procedures. Regular system design team meetings. courred on all FM optical interfaces, these are also planned for ROE change between MTM and FM interface for MHC).	
		PE4.3 PE4.4	1 1 1 2	MSSL MSSL MSSL MSSL MSSL	Mechanical interfaces Thermal interfaces Optical interfaces Electrical interfaces Cleanliness interfaces		Early checks on FM optics interfaces complete Checked during MTM integration to s/c (except ICU, see separate item) End to end optics tests are planned in NRL, early performance measurements show no incompatibilities (all optics manufactured to spec.) Checked during integration of PM s/c EIS contamination plan makes use independent measurement during integration and test. monitoring of the system side, aided by Hiro advising on OTA cleanliness, ensure that s/c		
			2	MSSL	PA interfaces		Spacecraft wide contamination r contamination procedures on all These have been experienced no ISAS and the EIS team has high is followed through.	ersa is understood and within allowable contamination budgets. neetings now happening regularly have resulted in improved instruments and at spacecraft level w for both PM, MTM and FM. Good communication between lighted concerns from either side in a timely manner and resolution	
1000	EIS	PE6	1	MSSL	System failure during environmental testing	Delay in delivery whilst reworks and retests occur	Design margins and derating of components. AIV schedule to include contingency for such events. Items which are both critical and particularly susceptible to have spares available – within budgetary constraints.	Each subsystem item should have been qualified to appropriate levels by analogy, analysis or test prior to system test. Lessons learned during PM and MTM/TTM environmental tests should allow us to identify the susceptible items. Both PM and MTM tests are now complete (TTM system tests will occur in Nov 02). All the experimental evidence points to EIS being well designed with suitable margins.	
		PE6.2 PE6.3	0 0 3	BU MSSL MSSL	MTM/TTM PM FM		Schedule no longer allows for failures and consequent retests	MTM/TTM completed with no failures PM integration completed with no failure Qualification occurred on MTM/TTM, FM optics have now been fully qualified. Slight increase of mass on monitor board means that qualification will need to be carefully monitored to avoid over test	
1000	EIS		2 0 0 1	MSSL BU MSSL MSSL	Incompatibility with spacecraft discovered during integration MTM/TTM PM FM telescope mechanical	Delays to entire mission. Increased costs of support of rework in Japan. Possibility that instrument performance be compromised.	Close co-operation with the spacecraft design teams. Identification and control of comprehensive interface specification.	This would arise from inadequacy of interface management between the EIS and spacecraft teams. There is a vital need for prompt and reliable exchange of accurate interface information with the spacecraft teams. Hiro visited BU prior to MTM/TTM delivery Hiro visited MSSL prior to PM delivery All mechanical interfaces checked at MTM integration	
		PE7.4	2	MSSL	FM ICU and electrical			ICD is in place and under configuration control but integration has not happened. At MTM stage a dummy mass from ISAS was used (need Hiro to confirm ICD interface was followed): Hiro confirmed ICD drawing used	

MSSL/SLB-EIS/AD005.09

1000	EIS	PE8	2	MSSL	Late delivery of instrument		e	As program progresses the number of technical problems is
						programme		reduced and the accuracy of the scheduling is increased. The
							e	current flight delivery schedule is realistic and achievable
		PE8.3	4	MSSL	FM		requirements for each model	
							0	Schedule is still realistic but does not achieve delivery date of 1
								May 04. Although we hope to make up some time there is a risk
								we will be late. Absolute deadline will be discussed with s/c team
								closer to delivery date and efforts will be made to avoid any
								impact on s/c schedules.
								Last resort (although NOT recommended) is to return EIS to UK
								during period Oct 04 to Apr 05 when telescopes are returned to PI
								control and do calibration then.

8

4.2 Sub-system level (PS)

Programmatic risks are now considered for major WBS items in the Hardware (WBS Code 1000) and AIV (3000) branches.

Category	Element	Risk #	Prob	Owner	Event	Effect	Management	Notes
1100	Structure	PS1	1	BU	Composite material shows excessive out-gassing	Contamination of optical components/CCDs	Select and evaluate materials. Plan out-gassing paths. Investigate with Contamination Model.	Samples being sent to 2 tests houses to check outgassing performance of panels (samples for this will be first produced from McLaren). Measurements show that outgassing is within specification. Bake-out of FM panels shows that they are cleaner than MTM panels. Analysis of MTM cleanliness shows that EIS was within the contamination budget with a good margin.
1300	Optics	PS2	1	NRL	Multilayer coating fails to provide adequate reflectivity or other property	Instrument throughput threatened.	Seek to fully understand the coating technology and the sources of variation of performance. Consider possibility of re-coating or provision of uncoated spares. Allow contingency for this. Consider alternative coating technologies.	All flight coatings now in and within EIS spec.
1300	Optics	PS3	1	NRL	Optic inadequately figured or polished	Poor focusing properties leading to loss of spatial and spectral resolution. Possible need for re-work.	Form an error budget for each optical to validate the error budget. Unit level Correctly figured optics have been del	
1300	Optics	PS4	1	NRL	Grating manufacturing faults	Loss of throughput.	Error budget, with quantified error sources, is required. Test of grating performance prior to multilayer coating.	One flight grating, in spec., and a suitable backup, have been delivered to NRL Flight grating now fully tested and qualified
1300	Optics	PS5	2	NRL	Proposed mechanism fails to meet spacecraft disturbance torque requirement	Other Solar-B instrumentation performance degraded.	Seek alternative mechanisms (mass penalties are likely), or propose spacecraft-level observation (i.e. mechanism) control protocol. Seek to avoid this risk in the early stages of the programme.	This is an important requirement for the successful operation of Solar-B SOT. Life tests successful for mechanism. Disturbance analysis from s/c shows no problems and they have not requested a disturbance test for MTM Analysis of disturbances measured during FM testing sent to MELCO for inclusion in system level testing. Known deviations from requirements (on coarse mirror movement) have been indicated by EIS team leading to an operational constraint agreed by both EIS and the s/c
1600	Shutter	PS6	0	NRL	Motor unavailable	Shutter redesign, possible life test program (costs & schedule affected)	Explore likelihood of this, if necessary study replacement options.	Motor is now fully tested and qualified as part of the FM shutter
1400	Filters		4	NRL	Accidental breakage of filter	Possible debris in the instrument. Excessive light at CCDs. Excessive heat input.	non-flight protective covers, spares, design for exchange procedures (including cleaning)	The risk remains the same. We have designed the front end of EIS to allow for easy removal of the front baffles and the clamshell so that a late filter change is possible.
1500	Slit	PS8	2	NRL	Slit exchange mechanism fails disturbance torque criteria	Other Solar-B instrumentation performance degraded.	Choose a single slit (or slit/slot) that gives best all-round performance, or seek alternative mechanisms. Merge operational sequences with other instruments.	See also the comments on PS2 – PS6 Life tests successful for mechanism. Measurements of disturbance frequencies and torques presented to MELCO for analysis where there is concern about resonance with the solar array panels. Awaiting results from MELCO models

1710	CCD	PS9	2	MSSL	Loss of device due to (e.g.) static	Replacement needed	Provide for (in contract) adequate	Simulators may be used for many test purposes.
1/10	CCD	1.57	-	MODE	discharge	reepideement needed	test-grade devices during	All flight components stored in ESD protected environment.
							development programme and spares	Assembly areas have ESD protection i.e. antistatic chairs,
							of flight devices. Design for late	benches, floors.
							replacement of CCD. Consider static	Daily checks of ESD protection procedures introduced for FM
							discharge protection procedures.	program.
1730	ROE	PS10	1	MSSL	High power consumption of readout	Exceed instrument power	Carefully engineer for low power.	Possible tradeoff between readout rate and power consumption
					electronics	budget	Demonstrate at breadboard level	Power within specification (and budget)
								FM components are exhibiting higher power demands than
								expected – analysis ongoing (this only effects transients rather
1000	D. P. J	DOLL	-	N COCK	D. U.S. 11			than average power consumption which is lower than PFM)
1922	Radiator	PS11	2	MSSL	Radiator cannot provide necessary	Radiation damage (see	Seek to minimise CCD radiation	The orbit and spacecraft configuration mean that Earthshine
					CCD cooling	Operational Risks - 1740 CCD) causes unacceptable	damage by alternative clocking	becomes a problem for efficient thermal design with a simple radiator.
						performance degradation	regimes and/or shielding. Consider radiator designs that avoid viewing	Updated thermal model shows current design provides adequate
						performance degradation	the Earth.	cooling of CCDs. – Now tested in TTM.
							the Earth.	Subsequent analysis of true CCD power and a redesign of the
								thermal link between CCDs and Radiation Shield will keep CCD
								temperatures within spec at all times.
3410	Electronic	PS12	0	MSSL	EGSE software not ready for AIV	AIV cannot be	Design for interoperability with sub-sy	stem EGSE. Specify early delivery of an EGSE version which is
	Ground				programme caused by lack of	accomplished	capable of supporting a subset of func	
	Support				continuity of Norwegian effort		Front end EGSE code nearing complete	tion and Norwegian effort now started on interpretation of mission
	Equipment						data.	
	(EGSE)							ware now and can be readily updated with any new requirements
							from the engineers during FM AIV ac	
3420	Mechanical	PS13	1	BU		D' (1 1 1	Second system is being commissioned Obtain certificates of purity or equip	
3420	Ground	PS13	1	BU	Gas purge equipment – contaminates instrument	Dismantle, clean and reassemble structure and	with in-line gas analysers. Verify	A purged structure is considered to be considerably easier to produce than a vacuum vessel (especially given the Solar-B mass
	Support				liisu unient	optics. This is	purity of equipment.	constraints). The baseline transport case is now a purged
	Equipment					unachievable in the current	All pipework was cleaned and	container, definition of the purge system from a cleanliness point
	(MGSE)					schedule.	baked for MTM, this will be repeated	is a priority. Purge system identified and in use for MTM
	(for FM. Procedures will be clarified	This will be cleaned and re-calibrated for FM use.
							and updated based on MTM	During storage at ISAS daily checks on purge system and gas
							experience.	supply integrity will be checked by EIS team member in ISAS.
3800	Calibration	PS14	2	RAL	Insufficient time to complete	Poor knowledge of in-	Allow schedule contingency at this	MSSL removed from responsibility column. Only one individual
					calibration	flight performance - value	stage of the programme. Rehearse	should own each risk. This risk may need to be broken down to
						of science data reduced	calibration procedures prior to arrival	manage it easier and spread the ownership more sensibly.
							of FM instrument. Ensure adequate	Time for calibration scheduled in with some contingency.
							testing of the individual optical elements (esp. efficiencies) before	Need to protect this time. This has not been possible, calibration is now on a success assumed basis.
							delivery to RAL.	Individual QE measurements will allow some knowledge of
							derivery to ICAL.	overall system and act to check calibration. QE measurements of
								filters, mirror and grating have happened.
3800	Calibration	PS22	1	MSSL	No QE measurements of CCD	Makes calibration difficult	Schedule QE measurements in	This was done but results are still been analysed – recent tests by
							Re-analysis of results, consider other	other groups, however, show that QE of these devices at EUV
							options of QE measurement.	wavelengths is less than predicted by theory.
3800	Calibration	PS23	0	NRL	No QE measurements of optics	Makes calibration difficult	Schedule QE measurements in	These measurements now available for FM optics
1100	Structure	PS15	1	BU	Non-delivery of suitable structure	Probable termination of	BU to commission expert help in	BU have now employed an external expert and a new contract
						project.	design and manufacture of	with McLaren composites should ensure the production of the
							composites.	structure. MTM structure complete and tested.
								FM panels almost complete.

MSSL/SLB-EIS/AD005.09

1710	CCD	PS16	0	MSSL	CCD quality poor	Degraded science performance	Take out option to purchase further devices, as necessary.	Contract for CCD foresees this possibility. More experience with MAT suggests this is unlikely All CCDs delivered and are all within specification on image quality requirements.
	Sub-system Structure Camera	PS17.1 PS17.2	4 4	BU MSSL	Late delivery of subsystem for integration	Schedule delay	Establish realistic schedule and then rigorously enforce.	All sub-systems are now late as progress is dependent on structure being ready and/or integration with NRL components both of which have been delayed. It is still planned to deliver a calibrated instrument in May 04.
	ICU QCM Optics/Mech' MHC Software GSE	PS17.3 PS17.4 PS17.5 PS17.6 PS17.7 PS17.8	0 6 6 4	MSSL RAL NRL MSSL MSSL Var			Order QCMs as early as possible	QCMs purchased
-	MHC	PS18	-	MSSL	NRL software not transferable to flight standard		Close Liaison between NRL and MSSL	Issue raised at NASA PDR Pre-shipment review for flight software of MHC occurring at the end of this month. ICD agreed between NRL and MSSL. Integration of FM will confirm flight readiness.
1730	ROE	PS19	0	MSSL	LTC1419 14bit ADC fails during qualification program	Schedule delay and cost whilst new ADC and new design found or shielding applied	Close monitoring of qualification for these chips and awareness of alternative device.	No 14bit space qualified ADC is available in the marketplace at the moment. Decision to use these chips is based on the expectation of the successful qualification of these parts (based on preliminary tests performed in the US) and the technological advances and increased scientific return. These devices have passed qualification.
1A00 1730	ICU ROE	PS20	0	MSSL	Damage to ACTEL device or processor from poor mounting or removal after poor mounting	to schedule if rework	Ensure competence of qualified wiremen at MSSL to do this task or find suitable outside contractor	One outside contractor was found but proved unreliable. One wireman at MSSL has successfully soldered PM processor and ACTELs (will re-appraise at FM stage) Further successful attempts to mount devices on PM boards makes us confident that we can do this safely All flight ACTELS safely mounting and tested
1710	CCD	PS21	2	MSSL	Loss of device due to (e.g.) wrongly applied voltages	Replacement needed	Careful design of test power supplies and switch on procedures. Design for late replacement of CCD.	An analysis of this is needed Using EIS PM electronics protects the CCDs, using test electronics the procedures are well established with no problems

11

5 OPERATIONAL RISK

5.1 System Level (OE)

Category	Element	Risk #	Prob	Owner	Event	Effect	Management	Notes
1000	EIS	OE2	2	RAL	Contamination - optics or detector	Progressive loss of sensitivity and ultimate loss of instrument, uncertainty in intensity calibration	MTM/TTM experience (witness plates low. From the NRL analysis a conserva- concern from a contamination point of outgassing rates for the solar panel to i for analysis. (Analysis now shows that	r closure, Purging, QCM, CCD Heater, venting paths , QCM, TQCMs in bakeouts) leads us to believe that this risk is ative degassing cycle has been proposed for flight. The largest view is on the outside of the filters – we need an estimate of mprove the current estimates. NRL are trying to obtain a sample this is not a concern. Solar panels will be baked for flight.) unination models show that the cleanliness plan (confirmed at ired contamination budget.
1000	EIS	OE3	2	MSSL	Electronic Component failure		Appropriate component quality, fault tolerant design, redundant interfaces	Failure mode analysis to unit, board or component level will be carried out as the designs mature. Components chosen to highest possible specifications. (see mssl/slb-eis/sp020)
1000	EIS	OE4	1	MSSL	"bad command"	Ranges from severe (damage to hardware?) to nearly benign (although an observation could be missed).	Identify hazardous states of the instrument. Do not allow these to be reached without operator confirmation. Allow detection of such conditions (e.g. by recording all tele- commands).	A bit error in a command sequence should be detected by checksum mechanisms incorporated into the data link protocols. This risk concerns the possibility that the operator sends a valid command that nevertheless is not the intended or appropriate one. Basic operation code has now been under test for almost 2 years and the code hardened to any such errors. Potentially damaging commands require 2 commands to operate ('arm' and 'fire'). Pre- commanding checks in planning software will also prevent errors.
1000	EIS	OE5	2	MSSL	On-board software error	Control program halt, output data error, & effects in "bad command"	Allow detection and reboot, periodically compare memory checksum with nominal value	probable cause: SEU memory used is SEU immune Full code upload is possible and flight code is stored on EPROM on board.
1000	EIS	OE6	2	ISAS	Disturbance from mechanism of another instrument	Degraded science data	Need to manage observing sequence. Control disturbing source budget	MTM disturbance tests carried out but awaiting final report. S/c analysis shows that this is not a problem. At CDR Kosugi-san re- iterated that no other on board mechanisms should affect EIS observations.

5.2 Sub-system level (OS)

Risks associated with individual WBS elements are considered.

Category	Element	Risk #	Prob	Owner	Event	Effect	Management	Notes	
1200	Door	OS1	2	BU	Clamshell Door(s) mechanism failure	instrument. Fail open - possible contamination during thruster firings.	Life-test programme Redundant heaters in actuators	There is design heritage from the TRACE instrument for the clamshell mechanism Flight qualification program will be carried out	
1300	Optics	OS2	2	NRL	Ageing of multilayer coatings	Instrument throughput reduced.	Perform life tests on coatings whose ageing properties are unknown.	Reduced to 2 on advice from NRL	
1300	Optics	OS3	2	NRL	Scanning mechanism failure	Loss of scanning and alignment compensation	No possibility to move outside of functional position. Monitoring and management of movements during mission. Successful qualification and lifetest program performed		
1300	Optics	OS4	2	NRL	Grating focus mechanism failure	(fail in focused position) Flat-fielding of detector no longer possible. (fail in de-focused position) loss of science	. Successful qualification and lifetest program performed.		
1600	Shutter	OS5	1	NRL	Shutter failure	(fail closed) Loss of instrument (fail open) image smearing	Select proven technology	. Successful qualification and lifetest program performed	
1400	Filters	OS6	1	NRL	meteoroid strike on front filter	possible debris in the instrument. White light ingress to detector - worsens SNR. Heat input to instrument - thermal stresses and consequent misalignment	Recess filter in exterior baffle. Use segn	nented filter design to limit area of breakage.	
1500	Slit	OS7	2	NRL	Slit exchange mechanism fails	Fail in a nominal slit position - loss of rapid imaging facility Fails in viewfinder position - loss of spectroscopy in intermediate position - some spectroscopy retained	Select proven technology.	(assuming mechanism with one or more spectroscopy slit and a wide viewfinder slit) Life test for slit mechanism completed successfully	
1710	CCD	OS8	2	MSSL	Radiation Damage to CCD	 Dark current distribution 2. CTE change clock bias drift 4. no longer operates (output FET latch-up) 		mensurate with mission Monitor dark current distribution erating temperature and clocking rate. Provide ability to adjust	
1A00	ICU/MHU	OS9	2		Radiation Damage to electrical component	Data degradation Latch-up – loss of function	Component selection to be rad hard to required level. Local shielding as required.	Radiation screening program is being investigated for susceptible components where rad hard componenets are unavailable (mainly analogue devices) Above program completed successfully	
1710	EIS	OS10	4	MSSL	Contamination of CCDs (other than described in OE2 i.e. prior to delivery to RAL)	Progressive loss of sensitivity and ultimate loss of instrument, uncertainty in intensity calibration	Contamination control plan, Front door closure, Purging, QCM, CCD Heater, venting paths	Review of MSSL handling procedures in light of contamination control plan MSSL cleanroom upgraded with charcoal filters, CCDs held in bonded stores and chamber cleaned to be in line with cleanliness budget (although the present chamber life is short)	