Solar B - EIS

MULLARD SPACE SCIENCE LABORATORYUNIVERSITY COLLEGE LONDONAuthor: A Smith

SOLAR B - EIS RISK ASSESSMENT

Document Number: MSSL/SLB-EIS/AD/005.01 9 June 2000

Distribution:

NRL	G Doschek C Korendyke S Myers C Brown K Dere J Mariska	
NAOJ	H Hara T Watanabe	
RAL	J Lang B Kent D Pike	
BU	C Castelli S Mahmoud	
Mullard Space Science Laboratory	G Simnett J L Culhane A Smith	
	A James L Harra A McCalden	
	C McFee R Chaudery P Thomas	
	W Oliver P Coker R Gowen	
	K Al Janabi M Whillock	
SLB-EIS Project Office	A Dibbens	Orig
Author:	Date:	
Authorised By	Date:	
Distributed:	Date:	

CHANGE RECORD

ISSUE	DATE	PAGES CHANGED	COMMENTS
01	9 June 2000	All New	Document re-issued in new numbering system. A major review of risks has been conducted in preparation for the EIS UK PDR

CONTENTS

- 1. SCOPE
- 2. APPLICABLE DOCUMENTS
- **3. DISCUSSION**
- 4. PROGRAMMATIC RISK 4.1 System Level 4.2 Sub-system Level
- 5. OPERATIONAL RISK 5.1 System Level 5.2 Sub-system Level

Solar B EIS Risk Assessment

1. **SCOPE**

This document constitutes the central element of the Solar-B EIS Risk Management Process. Here programmatic (i.e. risks to the delivery for flight of the EIS instrument within the schedule and budget constraints) and operational risks (i.e. risks to the quality and in-flight performance of the delivered instrument) are covered.

Risks are characterised in terms of their nature, likelihood, origin and ownership.

2. APPLICABLE DOCUMENTS

MSSL/SLB-EIS/SP007 MSSL/SLB-EIS/SP011 EIS Work Break-down Structure Management Plan EIS Science Requirements EIS System Definition EIS-sys-eng-wbs EIS-man-manplan

3. DISCUSSION

This document contains a risk analysis for the Solar-B EUV Imaging Spectrometer (EIS) at system and sub-system level. Its purpose is to record the sources of risk and their degree for EIS and its subsystems, and the means to reduce them to acceptable levels. Operational and Programmatic risks are considered.

The applicable versions of the systems documents are:

EIS Science Requiements	MSSL/SLB-EIS/SP007.0	1 June 00
EIS System Definition	MSSL/SLB-EIS/SP011.0	1 June 00
Work Breakdown Structure	EIS-sys-eng-wbs 2	12 July 99

The probability of risks is described in a qualitative way using the following Scheme:

Term	Notation
Impossible	0
Very unlikely	1
Unlikely	2
Moderately Unlikely	4
Moderately Probable	6
Probable	8
Very Probable	9
Certain	10
Unknown	99

Risks are numbered for reference, according to type.

- PE : Programmatic EIS (system or Mission) risk
- PS : Programmatic Subsystem risk
- OE : Operational (i.e. post-launch) EIS (system or Mission) risk
- OS: Operational Subsystem risk.

Each of the above risk types are described in separate section of this document.

The risk <u>Category</u> is the WBS code of the origin of the risk. 1000 = EIS instrument, 0000 = Solar-B mission.

Ownership indicates the institute that will be responsible for management of the risk.

4. PROGRAMMATIC RISK

4.1 System level (PE)

Sources of programmatic risk to the project as a whole are considered first.

Category	Element	Risk #	Prob	Owner	Event	Effect	Management	Notes		
0000	Solar-B	PE3	1	ISAS	Launch Delay	Extra costs	Revise schedule	Has occurred once. Considered unlikely to occur again.		
1000	EIS	PE4	2-4	MSSL	Incompatibility of sub-system interfaces at pre delivery integration	Failure to integrate hardware or software. Delay and/or additional costs of re-work		management procedures. Regular system design team meetings. throughs, configuration management. Allow schedule margin.		
		PE4.1 PE4.2 PE4.3 PE4.4 PE4.5 PE4.6	4 4 2 4 4 2	MSSL MSSL MSSL MSSL MSSL MSSL	Mechanical interfaces Thermal interfaces Optical interfaces Electrical interfaces Cleanliness interfaces PA interfaces					
1000	EIS	PE6.1 PE6.2 PE6.3	2 2 2 2 2	MSSL BU MSSL MSSL	System failure during environmental testing MTM/TTM EM FM	Delay in delivery whilst reworks and retests occur	Design margins and derating of components. AIV schedule to include contingency for such events. Items which are both critical and particularly susceptible to have spares available - within budgetary constraints.	Each subsystem item should have been qualified to appropriate levels by analogy, analysis or test prior to system test. Lessons learned during EM and STM environmental tests should allow us to identify the susceptible items.		
1000	EIS	PE7 PE7.1 PE7.2 PE7.3	2-4 3 2 2	MSSL BU MSSL MSSL	incompatibility with spacecraft discovered during integration MTM/TTM EM FM	Delays to entire mission. Increased costs of support of rework in Japan. Possibility that instrument performance be compromised.	Close co-operation with the spacecraft design teams. Identification and control of comprehensive interface specification.	This would arise from inadequacy of interface management between the EIS and spacecraft teams. There is a vital need for prompt and reliable exchange of accurate interface information with the spacecraft teams.		
1000	EIS	PE8 PE8.1	4-6 6	MSSL BU	Late delivery of instrument	Schedule impact on spacecraft programme	Establish and agree realistic delivery schedule Establish and agree realistic requirements for each model Rigorously control internal schedules			
		PE8.2 PE8.3	4 4	MSSL MSSL	EM FM					

4.2 Sub-system level (PS)

Programmatic risks are now considered for major WBS items in the Hardware (WBS Code 1000) and AIV (3000) branches.

Category	Element	Risk #	Prob	Owner		Effect	Management	Notes
1100	Structure	PS1	4	BU	Composite material shows excessive out-gassing	Contamination of optical components	Select and evaluate materials. Plan out-gassing paths	
1300	Optics	PS2	99	NRL	Multilayer coating fails to provide adequate reflectivity or other property	Instrument throughput threatened.	Seek to fully understand the coating technology and the sources of variation of performance. Consider possibility of re-coating or provision of uncoated spares. Allow contingency for this. Consider alternative coating technologies.	This is mainly an issue with the so-called EIS-400 wavelength range coating, range 6 in EIS Science Notes (EIS-sci-notes), operating near 400 Å, which is baselined to use the relatively unknown Si/Sc multilayer pair. This risk also pertains to the ageing properties of coatings.
1300	Optics	PS3	2	NRL	Optic inadequately figured or polished	Poor focusing properties leading to loss of spatial and spectral resolution. Possible need for re-work.	Form an error budget for each optical to validate the error budget. Unit leve	
1300	Optics		99	NRL	Grating manufacturing faults	Loss of throughput.	Error budget, with quantified error sources, is required. Test of grating performance prior to multilayer coating.	All comments also apply as per PS2
1300	Optics	PS5	2	NRL	Proposed mechanism fails to meet spacecraft disturbance torque requirement	Other Solar-B instrumentation jeopardised.	Seek alternative mechanisms (mass penalties are likely), or propose spacecraft-level observation (i.e. mechanism) control protocol. Seek to avoid this risk in the early stages of the programme. Another alternative would be to omit the mechanism in question.	This is an important requirement for the successful operation of Solar-B SOT. The nature of the mechanisms is dependant on the telescope type selection.
1600	Shutter	PS6	2	NRL	Motor unavailable	Shutter redesign, possible life test program (costs & schedule affected)	Explore likelihood of this, if necessary study replacement options.	The shutter design currently baselined, which has substantial spaceflight heritage, uses a specific (brushless) motor.
1400	Filters	PS7	6	NRL	Accidental breakage of filter	Possible debris in the instrument - as well as the big hole	non-flight protective covers, spares, design for exchange procedures (including cleaning)	With thin foils (1500 Å Al is being considered) this is a moderately probable event.
1500	Slit	PS8	2	NRL	Slit exchange mechanism fails disturbance torque criteria	Mechanism cannot be used.	Choose a single slit (or slit/slot) that gives best all-round performance, or seek alternative mechanisms.	See also the comments on PS2 – PS6
1710	CCD	PS9	6	MSSL	Loss of device due to (e.g.) static discharge	Replacement needed	Provide for (in contract) adequate test-grade devices during development programme and spares of flight devices. Design for late replacement of CCD. Consider static discharge protection procedures.	Simulators may be used for many test purposes.
1730	ROE	PS10	2	MSSL	High power consumption of readout electronics	Exceed instrument power budget	carefully engineer for low power. Demonstrate at breadboard level	Possible tradeoff between readout rate and power consumption
1922	Radiator	PS11	6	MSSL	Radiator cannot provide necessary CCD cooling	Radiation damage (see Operational Risks - 1740 CCD) causes unacceptable performance degradation	Seek to minimise CCD radiation damage by alternative clocking regimes and/or shielding. Consider radiator designs that avoid viewing the Earth.	The orbit and spacecraft configuration mean that Earthshine becomes a problem for efficient thermal design with a simple radiator.

MSSL/SLB-EIS/AD005.01

	Structure	PS17.1	<i>,</i>	below BU	integration		rigorously enforce.	
	Sub-system	PS17	2-6	See	Late delivery of subsystem for	Schedule delay	Establish realistic schedule and then	
1710	CCD	PS16	4		CCD quality poor	Degraded science performance	Take out option to purchase further devices	Contract for CCD foresees this possibility
	Structure		ŏ		Non-delivery of suitable structure	Catastrophic	design and manufacture of composites.	BU may need to solicit additional funding.
1100	Character and	PS15	8	BU		of science data reduced		
3800	(MGSE) Calibration	PS14	6		Insufficient time to complete calibration	Poor knowledge of in- flight performance - value		ge of the programme. Rehearse calibration procedures prior to
	Ground Support Equipment				instrument	reassemble structure and optics	with in-line gas analysers	produce than a vacuum vessel (especially given the Solar-B mass constraints).
3420	Equipment (EGSE) Mechanical	PS13	1	BU	Gas purge equipment - contaminates	Dismantle, clean and	Obtain certificates of purity or equip	A purged structure is considered to be considerably easier to
3410	Electronic Ground Support	PS12	1	MSSL	EGSE software not ready for AIV programme caused by lack of continuity of Norwegian effort	AIV cannot be accomplished	Design for interoperability with sub-system EGSE. Specify early delivery of an EGSE version which i capable of supporting a subset of functions for test use.	

5. OPERATIONAL RISK

5.1 System Level (OE)

Category	Element	Risk #	Prob	Owner	Event	Effect	Management	Notes
1000	EIS	OE2	6	RAL	Contamination - optics or detector	Progressive loss of sensitivity and ultimate loss of instrument, uncertainty in intensity calibration	Contamination control plan, Front doo	r closure, Purging, QCM, CCD Heater, venting paths
1000	EIS	OE3	99	MSSL	Electronic Component failure		Appropriate component quality, fault tolerant design, redundant interfaces	Failure mode analysis to unit, board or component level will be carried out as the designs mature.
1000	EIS	OE4	2	MSSL	"bad command"	ranges from severe (damage to hardware?) to nearly benign (although an observation could be missed).		A bit error in a command sequence should be detected by checksum mechanisms incorporated into the data link protocols. This risk concerns the possibility that the operator sends a valid command that nevertheless is not the intended or appropriate one.
1000	EIS	OE5	8	MSSL	on-board software error	control program halt, output data error, & effects in "bad command"	Allow detection and reboot, periodically compare memory checksum with nominal value	probable cause: SEU

5.2 Sub-system level (OS)

Risks associated with individual WBS elements are considered.

Category	Element	Risk #	Prob	Owner		Effect	Management	Notes
1200	Door	OS1	2	BU	Clamshell Door(s) mechanism failure	Fail closed - Loss of	Life-test programme Redundant heaters in	n
						instrument. Fail open -	actuators	
						possible contamination		
						during thruster firings.		
1300	Optics	OS2	99	NRL	Ageing of multilayer coatings	Instrument throughput	Perform life tests on coatings whose agein	ng
						reduced.	properties are unknown.	
1300	Optics	OS3	2	NRL	Scanning mechanism failure	Loss of scanning and		ove outside of functional position. Monitoring and management
						alignment compensation	of movements during mission.	
1300	Optics	OS4	2	NRL	Grating focus mechanism failure	(fail in focussed position)	Life test programme. Redundant actuator	·8.
						Flat-fielding of detector no		
						longer possible. (fail in		
						de-focussed position) loss		
						of science		
1600	Shutter	OS5	1	NRL	Shutter failure	(fail closed) Loss of	Select proven technology. Life test	
						instrument (fail open)		
1 1 0 0		0.04				image smearing		
1400	Filters	OS6	1	NRL	meteoroid strike on front filter	possible debris in the	Recess filter in exterior baffle. Use segmented filter design to limit area od breakage.	
						instrument. White light		
						ingress to detector -		
						worsens SNR. Heat input to instrument - thermal		
						stresses and consequent		
						misalignment		
1500	Slit	OS7	99	NRL	Slit exchange mechanism fails	Fail in a nominal slit	Select proven technology. Life test.	(assuming mechanism with one or more spectroscopy slit and a
1300	SIII	057	99	INKL	Sitt exchange mechanism rans	position - loss of rapid		(assuming mechanism with one of more spectroscopy sitt and a wide viewfinder slit)
						imaging facility Fails in		wide viewinider sint)
						viewfinder position - loss		
						of spectroscopy in		
						intermediate position -		
						some spectroscopy		
						retained		
1710	CCD	OS8	8	MSSL	Radiation Damage to CCD	1. Dark current	Appropriate shielding to ensure life comn	nensurate with mission Monitor dark current distribution
					-	distribution 2. CTE change	periodically. Provide means to adjust open	rating temperature and clocking rate. Provide ability to adjust
						3. clock bias drift 4. no	the clock bias levels.	
						longer operates (output		
						FET latch-up)		
	ICU/MHU	OS9	4	MSSL	Radiation Damage to electrical	Data degradation	Component selection to be rad hard to	
					component	Latch-up - loss of function	required level. Local shielding as	
							required.	