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Buoyancy

Buoyancy of a magnetic field is the reason large flux tubes rise to
photosphere. Sunspots from as field breaks through the
photosphere and emerges.

Figure: Formation of sunspots.
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Buoyancy Instability

First, consider a stratified, unmagnetised atmosphere, satisfying

dp

dz
= −ρg,

p =
ρRT

µ̃
,

T = T0(1−mz).

The linear temperature profile unstable to buoyancy instability that
may develop into convection. Assume no dissipation. Use simple
physical argument for instability conditions.
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Consider a small fluid element, as shown in Figure 2. Imagine that
this fluid element is lifted up a distance dz.

Figure: Physical explanation of the buoyancy instability.
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I Surrounding plasma has pressure change of dp, where

dp =
dp

dz
dz = −ρgdz,

(using equilibrium),

I density change of dρ

dρ =
dρ

dz
dz.

I Fluid element initially has higher pressure than the
surrounding plasma and so expands until

δp = dp.
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I Ideal MHD has adiabatic energy form, so p/ργ will be a
constant.

I Thus, pressure change inside is related to density change by

δp =
γp

ρ
δρ = c2sδρ = dp.

I

δρ =
δp

c2s
=
dp

c2s
=
dp/dz

c2s
dz = −ρg

c2s
dz.

I Instability if

δρ < dρ =
dρ

dz
dz,

or

−ρg
c2s

<
dρ

dz
.
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This can be written in a variety of different ways.

I For example, defining density scale height H = − ρ
dρ/dz ,

buoyancy instability if

1
H
− g

c2s
< 0.

I Multiply this by g, gives units of frequency squared. Define
the Brünt-Väıs̈ıla frequency, N , as

N2 = g

(
1
H
− g

c2s

)
, (1)

I Plasma is unstable to buoyancy if

N2 < 0.
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I Another equivalent form for the Brünt-Väıs̈ıla frequency is

N2 = g
γ
d
dz

[
log
(
p
ργ

)]
.

I Instability occurs if the entropy decreases with height.

I Can be rewritten in terms of the temperature gradient and so
instability occurs if

dT

dz
< −γ − 1

γ

µ̃g

R
=
(
dT

dz

)
ad

.

Remember that the temperature gradient is negative.

I Instability occurs when the temperature gradient (negative) is
sufficiently large and exceeds the adiabatic temperature
gradient, (dT/dz)ad, (entropy of the equilibrium is constant).

Flux Emergence Alan Hood St Andrews University 3 March 2010 9 / 38



I Another equivalent form for the Brünt-Väıs̈ıla frequency is
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Magnetic buoyancy instability

Figure: Physical explanation for the magnetic buoyancy instability.
Flux Emergence Alan Hood St Andrews University 3 March 2010 10 / 38



I Include a horizontal magnetic field (B(z), 0, 0) as well as p(z)
and ρ(z).

I The perturbations

f(z)ei(kx+ly−ωt).

I Most unstable mode occurs when l→∞.

I Rapid variation in y does not bend the field lines.

I Determine instability condition using similar ideas as above.
Assume that a fluid element rises a distance dz.

I External atmosphere changes by dp = (dp/dz)dz, BdB/mu
and dρ.

I Fluid element changes by δp, BδB/µ and δρ.

I There will be an instability if δρ < dρ.
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I Fluid element expands adiabatically

δp = c2sδρ.

I Magnetic field evolves with B/ρ held constant. Hence,

δB

B
=
δρ

ρ
.

I Fluid element expands until in total pressure balance with
external plasma.

δp+
B

µ
δB = dp+

B

µ
dB.

Using our expressions for δp and δB in terms of δρ, we have(
c2s + c2A

)
δρ = dp+

B

µ
dB,

and for an instability this must be less than (c2s + c2A)dρ.
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I Thus, we have an instability for

dp

dz
+
B

µ

dB

dz
<
(
c2s + c2A

) dρ
dz
.

I This can be rewritten as

gc2A
d
dz

[
log
(
B
ρ

)]
+ c2sN

2 < 0.
(2)

I Note that the plasma can be unstable with a magnetic field
even when the square of the Brünt-Väıs̈ıla frequency is
positive.
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Dispersion Relation

I If l→∞, a local dispersion relation can be obtained from the
linearised MHD equations. (

c2s + c2A
)
ω4 −[(

c4A + 2c2sc
2
A

)
k2 + c2Ag

d

dz
log
(
B

ρ

)
+ c2sN

2

]
ω2

+k2c2A

[
k2c2s + g

d

dz
logB +

c2s
c2A
N2

]
= 0 .

I Instability occurs if ω2 < 0.

I If k = 0, this reduces to the same condition derived in (2).

I This is called the magnetic buoyancy instability.
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Parker Instability

I If k 6= 0, the field lines are bent. Expect magnetic tension will
stabilise any instability.

I However, dense plasma (lifted up by perturbation) can drain
along field.

I Instability, called the Parker instability (or undular mode).

I From the general solution for ω2, the plasma is unstable if

k2c2s + g d
dz logB + c2s

c2A
N2 < 0.

(3)
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Conditions for emergence

Acheson (1979) derived the more general expression.

−Hp
∂
∂z (logB) > −γ

2 βδ + k̃‖
2
(
1 + k̃⊥

2

k̃z
2

)
,

(4)

with δ = −0.4 the superadiabatic excess, δ = ∇−∇ad, ∇ the
logarithmic temperature gradient and ∇ad its adiabatic value, and
k̃‖, k̃⊥ the horizontal wavenumbers.

Key term is β. Need β ≈ 1 for emergence!
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Not so simple!
To get to photosphere and emerge cylindrical tube requires twist
(Emonet and Moreno-Insertis).

(b2cont2.mpg)
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Failed Emergence

I B rises to top of convection zone.

I Needs β ≈ 1 (Acheson) for secondary instability.

I Not all B emerges.

I Should be a lot of magnetic field below the photosphere.

I Hinode sees horizontal B in quiet Sun.

I Any preferred orientation (e.g. E-W)?

I Evidence of twist?
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Physics included in simulations

1. Dynamics OK

2. Thermodynamics - Corona OK, chromosphere not OK

3. Radiative transfer (Oslo, Copenhagen)

4. Partial ionisation (can do)

5. Convection (can do)

6. Newton Cooling (can do)
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Initial Conditions

What to choose

1. 2D sheets

- Quiet Sun, ephemeral regions

2. 3D cylinders - maybe give sunspots.

3. 3D toroidal loop - axis can emerge.

Flux Emergence Alan Hood St Andrews University 3 March 2010 20 / 38



Initial Conditions

What to choose

1. 2D sheets - Quiet Sun, ephemeral regions

2. 3D cylinders - maybe give sunspots.

3. 3D toroidal loop - axis can emerge.

Flux Emergence Alan Hood St Andrews University 3 March 2010 20 / 38



Initial Conditions

What to choose

1. 2D sheets - Quiet Sun, ephemeral regions

2. 3D cylinders

- maybe give sunspots.

3. 3D toroidal loop - axis can emerge.

Flux Emergence Alan Hood St Andrews University 3 March 2010 20 / 38



Initial Conditions

What to choose

1. 2D sheets - Quiet Sun, ephemeral regions

2. 3D cylinders - maybe give sunspots.

3. 3D toroidal loop - axis can emerge.

Flux Emergence Alan Hood St Andrews University 3 March 2010 20 / 38



Initial Conditions

What to choose

1. 2D sheets - Quiet Sun, ephemeral regions

2. 3D cylinders - maybe give sunspots.

3. 3D toroidal loop

- axis can emerge.

Flux Emergence Alan Hood St Andrews University 3 March 2010 20 / 38



Initial Conditions

What to choose

1. 2D sheets - Quiet Sun, ephemeral regions

2. 3D cylinders - maybe give sunspots.

3. 3D toroidal loop - axis can emerge.

Flux Emergence Alan Hood St Andrews University 3 March 2010 20 / 38



Michelle Murray

1. 3D cylinders

2. Parameter study.

Found self-similar behaviour.

3. Form ‘complex’ field with two cylinders interacting in interior.

Figure: Two tubes interacting in the interior before emerging.
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Complex field with two cylinders

(Fig7.9.mpg)

Flux Emergence Alan Hood St Andrews University 3 March 2010 22 / 38


Fig7_9.mpeg
Media File (video/mpeg)



Complex field with two cylinders

(Fig7.11.mpg)
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Fig7_11.mpeg
Media File (video/mpeg)



Figure: Photospheric magnetograms. Can’t tell the difference!
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Cylinder Initial State
I Cylinder - too flat, too close to surface?
I Sunspots not round.

I Axis of tube does not emerge.
I Magnetic ‘tails’.

Figure: ‘Tails’ shape depends on twist.
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Toroidal Initial State

I Toroidal loop - fixed at deeper depth.

Figure: Initial toroidal field. No dip.

I Axis of toroidal loop emerges.

I Sunspot rounder!
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Emergence and Sunspot Rotation
Toroidal loop beneath the photosphere.

(B9db4.mpg)

Sunspots only drift fixed distance apart.
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B9_0db4.mpg
Media File (video/mpeg)



Sunspot Formation
Is it a simple tube?

(hinodesotemergingtrilobite.mov)
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hinode_sot_emerging_trilobite.mov
Media File (video/quicktime)



Coronal Magnetic Field

I No coronal field.

Investigate how B gets from convection zone
to corona. Flux rope forms but no dynamic ejection.

I Coronal B uniform, horizontal, vertical, slanted.

I Jets. Flux rope formation. Ejection.

I Coronal B non-uniform. Use two emerging tubes.

I Vasilis – two cylinders.

I David – two toroidal loops.

I David – eruptions. Toroidal loop plus uniform coronal field.
Several ejections!
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Toroidal loops - eruptions (David MacTaggart)

Figure: Emerging field reconnects with corona.
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Toroidal loops - eruptions (David MacTaggart)

Figure: Newly formed flux rope.

If overlying field ‘removed’ then flux rope erupts.
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Eruption
Movie showing a toroidal loop emerging and the density ejected
into the atmosphere.

(Toroidal.mpg)
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Toroidal.mpeg
Media File (video/mpeg)



Solar phenomena and flux emergence

I Sigmoids.

I Jets.

I Plasmoids.

I Current sheets and heating.

I Flux rope formations and ejection.

I Either ‘failed’ or full ejection.
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CMEs - Breakout Model

Breakout: shearing

Figure: Breakout model of CME. Needs large scale imposed shearing.

See also Zuccarello et al 2008.
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CMEs - Magnetic Breakout (David MacTaggart)

Figure: Two regions of emergence for breakout configuration.

Flux Emergence Alan Hood St Andrews University 3 March 2010 35 / 38



CMEs - Magnetic Breakout
Contours of the magnitude of B.

Figure: Third emergence in the middle.
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CMEs - Magnetic Breakout

Figure: Middle emergence pushes other fields apart.
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Conclusions

I Cannot easily reproduce exact photospheric magnetic field.

I BUT do need guidance form observations.

I Initial emergence is North-South for cylindrical loops.

I Toroidal loop is easier to fully emerge. Rounder sunspots.

I BUT cannot get small scale emergence into existing active
region.

I Emergence associated with shear.

I Quiet Sun and ephemeral regions from a magnetic sheet.

I Ellerman bombs.

I Lots of problems still to do!!
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