
SOHO CDS Technical Note

An EGSE Implementation of the FM
Commanding Scheme

CDS-MSSL-TN-0132
Version 1.0

E R Breeveld MSSL, 23 November, 1994.

Distribution: MKC, RAH, DJP, JP, CDP (RAL)
KFJ, RAG, KN, ERB (MSSL)
RAH please distribute further if necessary

Changes:
Version Date Comment
1.0 18/5/93 Completely restructured

Contents

1. Summary ... 2
2. Requirements... 2
3. Command Structure... 3
4. Block Header .. 4
5. Command Database... 5
6. Command Implementation ... 6

6.1. Single argument command blocks.. 6
6.2. Multiple argument command blocks .. 7
6.3. Fill Command blocks... 8
6.4. Other lists.. 10

7. Reference Documents.. 10

CDS-MSSL-TN-0132 Version 1.0 Page 1/10

1. Summary

This document details a suggested EGSE implementation of the FM commanding
scheme, with examples. These examples are very simple, using a few commands
detailed in the proposed structure for the FM command database.

2. Requirements

The EGSE implementation must allow all possible SOHO CDS commands to be sent.

CDS-MSSL-TN-0132 Version 1.0 Page 2/10

3. Command Structure

Most CDS commands must be packed into an On-Board Data Handling (OBDH)
command block before transmission to the spacecraft. Exceptions to this rule are for
hardware or OBDH commands that are not sent from the EGSE.

A CDS OBDH command block is defined by a collection of 16 bit words, starting with
the ESA defined MLA (memory load A) word and followed by at least two 16 bit data
words. The two data words fill the MLB (memory load B).

EID definition CDS Terminology Size

OBDH MLA MLA 1 word (16 bits)

command
block

MLB Command block Block Header 1 word

Block Body
(arguments)

1 to 29 words

Checksum Checksum 1 word

The Block Body must have at least one 16 bit word (argument) to make up the full
command block. Similar command blocks (with the same block header) can be com-
bined into a single block. The largest block body size is 29 from the ground, and the
minimum is one.

The word command (as opposed to command block) is ambiguous, as it could either
mean a whole command block, or an individual argument in the block body. It should
be avoided if possible. Unfortunately, the EID definition of a command is an MLA
word that is not followed by any MLB words.

In the following sections, the command blocks will be illustrated as individual bits
within each word, as follows:

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Bit15

MLA

Block Header

Argument 1
... Block Body

Argument 'n'
Checksum

The checksum is as defined in the EID. If it is not supplied, the ground system should
automatically append it.

CDS-MSSL-TN-0132 Version 1.0 Page 3/10

4. Block Header

Each block has a header word, which states the on-board destination (4 bits), function
(5 bits), and number of arguments to follow (7 bits). There is no end of block argu-
ment, other than the checksum.

The destination is the module with the CDHS on-board software that the block is in-
tended for. The function specifies what type of action is to be taken, and the argu-
ments specify the exact action.

Thus the structure is as follows:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

MLA

Destination Function Number of arguments ('n')

Argument 1

...

Argument 'n'.

Checksum

This structure allows the commanding of up to 16 destinations, with 32 functions at
each destination. Note that many more command blocks can be defined by each ar-
gument (up to 65536 different combinations per argument).

This is very similar to the previous command type 2 commands. Note that there is no
end of block command as in the old type 2 commands, just the checksum.

CDS-MSSL-TN-0132 Version 1.0 Page 4/10

5. Command Database

The suggested FM command database structure is shown below. It is a simplification
of the EM database, but unlike the EM database, characters within the command
mnemonic do not need to be interpreted.

Suggested structure:

Mnemonic Comment Destination Function Command
argument

No. of
params

Hazardous
command

Param 1
bit start

Param 1
no. of bits

CBDFILL ... 4 2 0x 1 N 0 16
CBDTIM1 ... N/A N/A 0x 1 N 0 16
CBDTIM2 ... N/A N/A 0x 1 N 0 16

CBLFILL ... 5 2 0x 1 N 0 16
CBLX1 ... N/A N/A 0x 1 N 0 16
CBLX2 ... N/A N/A 0x 1 N 0 16
CBLY1 ... N/A N/A 0x 1 N 0 16
CBLY2 ... N/A N/A 0x 1 N 0 16

CBSFILL ... 5 3 0x 1 N 0 16

CBVNOOP ... 2 4 0x8000 0 N

CBEGHV4N ... 2 8 0xABAB 0 Y
CBEGHV4F ... 2 8 0xCBCB 0 N

NB: Those commands with "N/A" as destination and action do not have block
headers, and are only used within fill commands, see below. The EGSE should
not allow such commands to be sent outside fill command blocks.

Further columns would be needed at the right of the table for extra parameters; they
are not shown here for brevity.

CDS-MSSL-TN-0132 Version 1.0 Page 5/10

6. Command Implementation

Details of the three basic types of command blocks (single argument, multiple
argument, and fill command blocks) are illustrated below.

6.1. Single argument command blocks

Single commands can be constructed by taking the destination and function to form the
header word; followed by the single command argument word (the command body).
There is no end of block command as with the EM commanding.

Thus the command:

CBEGHV4N ! (16 bit header + 16 bit argument)

would translate to:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

MLA

Destination = 2 Function = 8 Number of arguments ('n') = 1

Argument 1 = 0xABAB

Checksum

The final command would then look like:

(MLA) ! MLA as per EID
0x2401 ! Destination = 2, Function = 8 (5 bits), no = 1 (7 bits)
0xABAB ! Command CBEGHV4N
(checksum)

CDS-MSSL-TN-0132 Version 1.0 Page 6/10

6.2. Multiple argument command blocks

Block commands can be implemented by taking the destination and function and fol-
lowing the header by the arguments. All the commands in the block are executed im-
mediately on reception on-board. Only commands with the same destination and
function can be blocked together.

On the EGSE, multiple argument command blocks are encoded within a start_block,
commands, end_block construction. If more than 29 command block arguments are
attempted, then the EGSE should signal an error.

Thus the command block:

start_block
CBEGHV4N ! 16 bit header + 16 bit argument
CBEGHV4F ! Header not needed, 16 bit argument only

end_block

would translate to:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

MLA

Destination = 2 Function = 8 Number of arguments ('n') = 2

Argument 1 = 0xABAB

Argument 2 = 0xCBCB

Checksum

The final command would then look like:

(MLA) ! MLA as per EID
0x2402 ! Destination = 2, Function = 8 (5 bits), no = 2 (7 bits)
0xABAB ! Command CBEGHV4N
0xCBCB ! Command CBEGHV4F
(checksum)

CDS-MSSL-TN-0132 Version 1.0 Page 7/10

6.3. Fill Command blocks

Fill commands are used to fill CDHS tables with commands or information. On the
EGSE, fill command blocks are encoded within a start_fill, commands, end_fill con-
struction. There is no restriction on the destination or function of commands within the
fill command block. Under come circumstances, for instance with deferred command
fill command blocks, the fill blocks may contain multiple command blocks.

For this example, deferred commands are collections of commands, each preceded by a
32 bit 'local on-board time' (as per EID), in seconds. They are blocked with a header
and a location. The exact implementation of deferred commands is not relevant,
changes can be made via the command database without changing the EGSE code.

Note that the location command (CBDFILL) has the destination 'deferred command'
and function 'fill', but individual deferred commands (e.g., CBVNOOP, CBEGHV4N)
do not.

Thus the deferred command store fill instructions:

start_fill
CBDFILL = 25 ! Location in the store
CBDTIM1 = 0x0034 ! High order time for commands
CBDTIM2 = 0x1682 ! Low order time for commands
start_block

CBEGHV4N ! 1st command
! (16 bit header + 16 bit argument)

CBEGHV4F ! 2nd command (16 bit argument)
end_block
CBDTIM1 = 0x0034 ! High order time for command
CBDTIM2 = 0x17A6 ! Low order time for command
CBVNOOP ! 3rd command (unblocked)

! (16 bit header + 16 bit argument)
end_fill

would be translated into:

CDS-MSSL-TN-0132 Version 1.0 Page 8/10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

MLA

Destination = 4 Function = 2 Number of arguments ('n') = 10

Argument 1 = 25

Argument 2 = 0x0034

Argument 3 = 0x1682

Defer. dest. = 2 Defer. action = 8 Defer. no. of arguments ('n') = 2

Defer. command 1 = 0xABAB

Defer. command 2 = 0xCBCB

Argument 7 = 0x0034

Argument 8 = 0x17A6

Defer. dest. = 2 Defer. function = 4 Defer. no. of arguments ('n') = 1

Defer. command 3 = 0x8000

Checksum

The final command would then look like:

(MLA) ! MLA as per EID
0x410A ! Destination = 4, Function = 2 (5 bits), no = 10 (7 bits)

0x0019 ! Location = 25 (19hex)

0x0034 ! Time 1 (most sig. word)
0x1682 ! Time 1 (least sig. word)
0x2402 ! Destination = 2, Function = 8 (5 bits), no = 2 (7 bits)
0xABAB ! Command CBEGHV4N
0xCBCB ! Command CBEGHV4F

0x0034 ! Time 2 (most sig. word)
0x17A6 ! Time 2 (least sig. word)
0x2201 ! Destination = 2, Function = 4 (5 bits), no = 1 (7 bits)
0x8000 ! Command CBVNOOP

(checksum)

CDS-MSSL-TN-0132 Version 1.0 Page 9/10

6.4. Other lists

There is much room for expansion here, without changing the EGSE code.

This scheme would easily accommodate Error actions, Raster Parameter Lists, Health
Monitor values, Out-of-Limits actions, etc.; all using the start_fill, end_fill instruc-
tions. Only additional entries in the EGSE database would be needed.

7. Reference Documents

1. CDS-MSSL-TN-0131 Modified Commanding Scheme, Version 1.2
2. PLP/410S/EID A Experiment Interfaces Document, Issue 1, Rev.0

CDS-MSSL-TN-0132 Version 1.0 Page 10/10

