Gravitational Wave Astronomy

Lee Samuel (Sam) Finn

Penn State University
Lectures 1 \& 2
Gravitational wave generation, propagation and detection

Lectures 3-5
The science enabled by gravitational wave observations

Relevance of gravitational waves in astronomy

Gravitation powers the most energetic - and energetically efficient - astronomical phenomena

Type II supernovae powered by stellar core collapse

GRBs, quasars powered by accretion onto rapidly rotating black hole

Coalescing black hole binaries radiate at a rate of $\sim 10^{57} \mathrm{erg} / \mathrm{s}$ over $\sim 10^{-4}\left(\mathrm{M} / \mathrm{M}_{\odot}\right) \mathrm{s}$!

The central engines of gravitationally powered phenomena are electromagnetically obscured or invisible

Energetic phenomena are associated with strong gravitational fields

Gas, dust accumulate in potential \& obscure engine powering eletromagnetic emission

Gravitational radiation carries the signature of the central engine's dynamics

Gravitational, electromagnetic wave analogy

Charge? Mass
Current? Momentum
Radiation? Time varying mass, current distributions

Gravitational radiation couples

very weakly to matter
No (negligible) reddening
No (negligible) extinction
Undistorted view of central engine dynamics

No gravitational wave zone of avoidance!
zone ol avoluance!

Understanding gravitational radiation: Gravitation, generally

Tidal forces are the real manifestation of gravitation

Equivalence Principle
Free test-body trajectories depend only on initial position, velocity
Can't distinguish gravity from coordinate system acceleration on basis of single trajectory

Gravity is what can't be explained by coordinate system acceleration
"Tidal force" acting on separation between nearby trajectories

$$
\frac{\partial^{2}}{\partial t^{2}}\left(z_{1}^{j}-z_{2}^{j}\right)\left(\frac{\partial^{2} \phi_{G}}{\partial x^{j} \partial x^{k}}\right)\left(z_{1}^{k}-z_{2}^{k}\right)
$$

Gravity is tidal acceleration

Gravity is a space-time metric phenomena

Metric describes separation between points in space-time...

Change in rate of separation is tidal acceleration...

Tidal acceleration is related to difference between Minkowski and space-time metrics

Infinitesimal coordinate separation between space-time points

$$
\frac{\partial^{2}}{\partial t^{2}}\left(z_{1}^{j}-z_{2}^{j}\right) \quad\left(\frac{\partial^{2} \phi_{G}}{\partial x^{j} \partial x^{k}}\right)\left(z_{1}^{k}-z_{2}^{k}\right)
$$

Understanding gravitation:
 Gravitational wave generation

Weak gravitational waves in Minkowski space can be understood by analogy with electromagnetic waves

	Maxwell	Einstein
Source	Four-current density	Stress-Energy density
"Potential"	A_{μ}	$h_{\mu \nu}$
Force Law	Lorentz	Geodesic Equation with metric $g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}$
Gauge group	$\mathrm{U}(1)$	Poincare group (general coordinate transformations)
"Field Equations" in "Lorentz Gauge"	$\square A_{\mu}=-4 \pi J_{\mu}$ $\frac{\partial A^{\mu}}{\partial x^{\mu}}=0$	$\square \bar{h}_{\mu \nu}=-\frac{16 \pi G}{c^{2}} T_{\mu \nu}$ $\frac{\partial}{\partial x^{\mu}} \bar{h}_{\nu}^{\mu}=0$ $\left(\bar{h}_{\mu \nu}=h_{\mu \nu}-\frac{1}{2} \eta_{\mu \nu} h\right.$ $\left.h=\eta^{\alpha \beta} h_{\alpha \beta}\right)$

Electromagnetic waves are dipole at leading order

Solution of the wave equation...
$\square A^{\mu}=-4 \pi J^{\mu}$
$A^{\mu}(t, \mathbf{x})=-4 \pi \int d^{3} x^{\prime} \frac{J^{\mu}\left(t-\frac{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}{c}, \mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}$
Expand $\left|x-x^{\prime}\right|$ in integrand for small $\left|x^{\prime}\right|$ and keep radiation (1/r) term...
$\frac{1}{|\mathbf{x}|}\left[J^{\mu}\left(\mathbf{x}^{\prime}\right)+\frac{x^{\prime j}}{c} \dot{J}^{\mu}\left(\mathbf{x}^{\prime}\right)+\ldots\right]_{\mathrm{ret}}$
Monopole contribution to radiation field vanishes
Charge conservation: total current in closed system sums to zero!

Dipole gives first nonvanishing contribution to radiation field

Gravitational waves are quadrupolar at leading order in velocity

Monopole radiation? None: mass is conserved
Dipole radiation? None: Dipole is center of mass, which - for a closed system

- is unaccelerated

First non-vanishing contribution to radiation arises from quadrupole moment
$h_{j k}^{\mathrm{TT}}=\frac{2 G}{c^{2} r} \underset{\uparrow}{\left[\ddot{\mathrm{I}}_{j k}\right]_{\text {ret }}^{\mathrm{TT}}} \begin{aligned} & \text { "Transverse-Traceless" gauge } \\ & \begin{array}{l}\text { specialization. Project transverse to } \\ \text { direction of wave propagation and } \\ \text { remove trace }\end{array}\end{aligned}$
Trace-free quadrupole moment of matter distribution

$$
\mathbf{I}_{j k}=\int d^{3} x\left[x^{j} x^{k}-\frac{x^{2}}{3} \delta_{j k}\right] \rho(\vec{x})
$$

Gravitational waves are too weak to imagine a Hertz-type experiment

Spinning dumbbell

$$
h \sim 10^{-39} \frac{1 \mathrm{~km}}{r} \frac{M}{1000 \mathrm{~kg}}\left(\frac{v}{300 \mathrm{~m} / \mathrm{s}}\right)
$$

Binary neutron star system

$$
L=\frac{1}{32 G c \pi} \int d^{2} \Omega r^{2} \dot{h}_{j k}^{\mathrm{TT}} \dot{h}_{j k}^{\mathrm{TT}}
$$

$$
=\frac{1}{5} \frac{G}{c^{5}} \dddot{\mathrm{I}}_{j k} \dddot{\mathrm{I}}_{j k}
$$

$$
h \sim 10^{-23} \frac{100 \mathrm{Mpc}}{r} \int_{\text {uminosity }}^{3 \mathrm{M}_{\odot}} \frac{150 \mathrm{~km}}{R}{ }_{f_{\text {orb }} \sim 125 \mathrm{~Hz}}
$$

$$
\sim \frac{G}{c^{5}}\left(\frac{M v^{2}}{T}\right)^{2} \sim \frac{\text { K.E. } / T}{c^{5} / G} \frac{\text { K.E. }}{T}
$$

$$
\begin{equation*}
\frac{c^{5}}{G}=3.6 \times 10^{59} \frac{\mathrm{erg}}{\mathrm{~s}} \tag{!}
\end{equation*}
$$

Example: Gravitational waves from a binary star system

Two point masses, $m_{1}=m_{2}=M / 2$, in a radius r circular orbit

Non-vanishing quadrupole moment components

$$
\begin{aligned}
& \mathrm{I}_{x x}=\frac{M r^{2}}{4} \cos ^{2} \omega t \\
& \mathrm{I}_{x y}=\frac{M r^{2}}{4} \cos \omega t \sin \omega t \\
& \mathrm{I}_{y y}=\frac{M r^{2}}{4} \sin ^{2} \omega t
\end{aligned}
$$

Remove trace

$$
\begin{aligned}
\mathrm{I}_{x x} & =\frac{M r^{2}}{4}\left[\cos ^{2} \omega t-\frac{1}{3}\right] \\
\mathrm{I}_{x y} & =\frac{M r^{2}}{4} \cos \omega t \sin \omega t \\
\mathrm{I}_{y y} & =\frac{M r^{2}}{4}\left[\sin ^{2} \omega t-\frac{1}{3}\right] \\
\mathrm{I}_{z z} & =-\frac{M r^{2}}{12}
\end{aligned}
$$

Second time-derivatives

$$
\begin{aligned}
& \ddot{\mathrm{I}}_{x x}=-\frac{M}{2}(\omega r)^{2} \cos 2 \omega t \\
& \ddot{\mathrm{I}}_{x y}=-\frac{M}{2}(\omega r)^{2} \sin 2 \omega t \\
& \ddot{\mathrm{I}}_{y y}=\frac{M}{2}(\omega r)^{2} \cos 2 \omega t
\end{aligned}
$$

Project transverse, trace-free
For radiation propagating along z axis...

$$
\begin{aligned}
h_{x x}=-h_{y y} & =-\frac{G M(\omega r)^{2}}{c^{2} R} \cos 2 \omega t \\
h_{x y}=h_{y x} & =-\frac{G M(\omega r)^{2}}{c^{2} R} \sin 2 \omega t
\end{aligned}
$$

Luminosity

$$
L=\frac{2 G}{5 c^{5}}(\omega r)^{4}(\omega M)^{2}
$$

References and things to think about...

References

S. L. Shapiro, S. A. Teukolsky. 1983. Black Holes, White Dwarfs and Neutron Stars (Wiley: New York)
P. C. Peters, J. Mathews. 1963. Gravitational radiation from point masses in a Keplerian orbit. Phys. Rev. 131:435
T. X. Thuan, J. P. Ostriker. 1974. Gravitational radiation from stellar collapse. Ap.
J. Lett. 191:L105 - L107.
C. Van Den Broeck. 2005. The gravitational wave spectrum of non-axisymmetric, freely precessing neutron stars. Class. Quant. Grav. 22:1825-1839.
Things to try
What is the radiation from a rapidly rotating, non-axisymmetric, non-precessing neutron star?
What is the braking index of for a pulsar whose spin-down is dominated by gravitational waves?
Consider a circular orbit binary system, losing energy adiabatically to gravitational waves. How does the binary period change with time?
Next Lecture: Gravitational wave propagation and detection

