Ions Crossing the Contact Discontinuity in Astrophysical Shocks

Narrow Radiative Recombination Continua Detected in a Planetary Nebula

Ehud Behar - code 662, GSFC / NASA on leave from the Technion, Israel

Collaborators

A TENAR WATER SAFE STATISTICS IN THE DESIGNATION IN THE DESIGNATION OF THE REAL PROPERTY IN THE REAL PROPERTY INTO THE REAL PROP

- Raanan Nordon (MPE)
- Young Sam Yu, Joel Kastner (RIT)
- Noam Soker (Technion)

For more see: arXiv:0901.1039

X-Rays from Planetary Nebulae

- A THE REPORT OF THE DARK STRATE OF THE OWNER AND THE REPORT OF THE REPOR
- Last evolution stages of low-mass stars 1-8 M_{\odot}
- Ejected envelope is ionized by UV radiation of central star - a future white dwarf
- But X-rays?
 - Fast wind of ~10⁻⁷ M_☉/yr UV driven to ~1,000 km/s slams into nebula
 - Reverse shock heats the fast wind to X-ray temperatures, creating the so-called Hot Bubble
 - Picture supported by X-ray images as hot bubble appears confined to the interior of the optical and IR nebula
 - Observed temperatures of 0.1 0.2 keV too low
 - Heat conduction / nebular evaporation into bubble?
 - Evolving wind

1D Radial Profiles

4

The second state shares and the state of the second state of the s

X-Ray Spectroscopy: Chemical Support for Shocked Fast Wind

The second states where a second with the the second s

- 300 ks Chandra / LETG
 Observation of BD+30°3639
 talk by Young Sam Yu
- 2T model kT = 160 eV, 260 eV
- Abundances match evolved WC9 wind and not nebula
- Argues against nebular evaporation

Mass fractions

10010	Element	Wind *	X-Rays
	Н		
States and	He	42%	42%
	С	50%	50%
	Ν	< 0.2%	0.24%
See No	0	5.9%	4.8%
1111	Ne	2%	3.3%
KNAN	Fe	0.05%	< 0.2%

* UV absorption (Marcolino et al. 2007)

How Well Do We Really Understand Collisionless Shocks?

- A THE REPORT AND A DESCRIPTION OF A DESC
- How realistic are the assumed sharp jump conditions?
- Collisionless: Mean free path for Coulomb collisions of wind carbon atoms blowing at 1000 km/s through the nebula is large - of the order of the nebular size

$$\lambda_{mfp} = v_w t_s \cong 2 \times 10^{16} \left(\frac{1}{Z_w}\right) \left(\frac{1}{Z_n}\right) \left(\frac{10^4}{n_n}\right) \left(\frac{M_w}{M_C}\right) cm$$

- Magnetic fields could sustain jump conditions of shock and contact discontinuity, but no direct evidence in PNs
- Magnetic fields would inhibit conduction/evaporation
- All these are very hard to study directly and therefore mostly left in the realm of theory
- Can we obtain further insights from the X-ray spectrum?

Interesting Discrepancies

Narrow C VII RRC Radiative Recombination Continuum

The second states which the second with the second second

- Recombination of *hot* ions (~100 eV) with *cold* electrons (~1 eV)
- RRC width => $kT_e = 1.7 \pm 1.3 \text{ eV}$
- Intermediate temperatures 1 eV < kT < 100 eV can not be significant
- · Origin?

Importance of High Spectral Resolution

A THE REACH SHE SHARE A LONG WITH A LONG AND A SHOOL IN THE SHERE SHE AND AND A SHARE AND AND A SHARE AND AND A

Physical Origin of C VII RRC: A List to Cross Out

- Photo-ionized plasma (AGN, XRB)
 - But, no hard X-ray source
- Temperature disparity $T_{ion} \gg T_e$
 - But, need hot electrons to ionize
 - and in any case trecombination >> te-heating (>> iso-species thermalization)
- Plasma instability and rapid radiative cooling
 - But, recombination rates > other radiative cooling processes
- Rapid (adiabatic) expansion and "ionization-freezing"
 - But, during expansion $\alpha^{RR} \propto nT^{-1/2} \propto T$
 - and prohibitive volume V/V₀ \propto n₀/n \propto (T₀/T)^{3/2} \approx 1000
- Charge-exchange capture into very high-n levels, or with dust grains
 - But, nebula is ionized

So What Can Explain The RRC?

A TE MANUS THE DARK FACTOR FACTOR DATE A MADERAL TO MADER TO THE STATE OF THE STATE

- 100 eV (shocked?) ions interact directly with 1 eV (un-shocked?) electrons, but where?
- Natural Location: Contact Discontinuity, the RRC could support the jump-condition picture, but can ions cross?
- Microphysics around CD is complicated. assuming a magnetic field and mere thermal motion:
 - $\tau_{Larmor} \approx 650 (M/M_{c})(B/1\mu G)^{-1} s$
 - $\tau_s \approx 1000 (kT^{cool}/1eV)^{3/2} (n^{cool}/10^4 \text{cm}^{-3})^{-1} \text{ s} (by e^{-}, p)$
 - $\tau_{rec} \approx 2 \times 10^7 (kT^{cool}/1eV)^{1/2} (n_e/10^4 cm^{-3})^{-1} s$
 - => Ions cross, slow down, & only much later recombine
- Intermediate-temperature region (say 10 eV) can not be large, or ions would stop and recombine before reaching 1 eV region ; $\Delta r_{inter} < v_{ion}\tau_s$ (10 eV) $\approx 10^9$ cm. In contrast with smooth gradient expected from heat conduction.

More Diagnostics

- RRC intensity (10⁴⁰ ph/s): Mass crossing rate of 4×10⁻⁸ M_☉/yr ~ 10% wind
- RRC contribution to flux is miniscule:
 - 33 RRC photons (~1/10ks),
 - 300 words/photon in paper
- From upper limit on C VI to C VII RRC flux ratio, very conservative hot-side temp. estimate kT^{hot} > 84 eV, i.e., ΔkT across CD > 80 eV

RRCs in Other Stellar Sources

The second state where a construction of the construction of the second second construction of the second second

-5.0•10⁻

24

- γ^2 Velorum WC8+07.5 (Schild et al. 2004)
- θ Muscae WC6+09.5
 (Sugawara et al. 2008)
- Persistence of RRC in γ Vel in two different phases suggests extended origin
- Different scale (~AU) and geometry than in PN, but maybe similar shock physics?

25 wavelength (A)

Conclusions

- A TE SERVICE THE SAME FACTOR STORE & MOODER'S CONTRACTOR OF A DESCRIPTION OF A DESCRIPANTE DESCRIPTION OF A
- X-ray gas originates from shocked fast WC wind
- RRC comes from direct interaction between 100 eV ions and 1 eV electrons
- Possible origin is in ions crossing CD into nebula
- For the first time: <u>Observed temperature jump ∆kT > 80 eV across CD</u>
- Argues for magnetic fields and against heat conduction (Alternative explanation for low temperatures is required)
- Observed in two WC binaries, same shock physics?
- WC obviously facilitates C RRC detection, but ions crossing the CD may be a general phenomena in stellar shocks

14

THANK YOU FOR YOUR ATTENTION