ATOMIC PROCESSES IN LABORATORY & ASTROPHYSICAL PLASMAS

X-Ray Spectroscopy School MSSL , March 2009

- · Introduction: Spectral Line Intensities
- Survey of Atomic Processes
 - Continuum (free-free & bound-free)
 - Bound-bound Transitions
 - Thermodynamic Equilibrium and Detailed Balance
- Laboratory and Astrophysical Plasma Regimes
- Modeling Approximations
 - Local Thermodynamic Equilibrium
 - Level-Population Kinetic Equations
 - Approximations: Coronal, Collisional-radiative, Line trapping, Nebular (photo-ionized), Transient

Spectral Line Intensities

• Line transition from upper level j to lower level i

The second of the second of the second of the second se

- Intensity (ph s⁻¹ cm⁻³) emitted in plasma $I_{ji} = n_j A_{ji}$
- The Einstein coefficient for spontaneous emission A_{ji} (s⁻¹) is a constant of nature, e.g., in dipole approximation $A_{ji} = (4/3\hbar)(\omega_{ij}/c)^3 |\langle i|\mathbf{r}_{ij}|j \rangle |^2$
- Diagnostics come from population of upper levels $n_j (T_e, n_e, \tau_{ij}, ...)$ and mostly from line ratios $I_{ji} / I_{lk} \propto n_j / n_l (T_e, n_e, \tau_{ij}, \tau_{kl}, ...)$
- Absolute line flux (photons s⁻¹ cm⁻²) $F_{ji} = \int I_{ji} dV / 4\pi d^2 \cong n_j A_{ji} V / 4\pi d^2$

Spectral Line Intensities (2/2)

- Recast $n_j \equiv (n_j/n_g) (n_g/n_Z) (n_Z/n_H) n_H$ = $(n_j/n_g) f_q A_Z n_H$ elemental

population frac. abundance abundance

- Take a two-level atom in steady state, excitation rate coefficient $Q_{ij}(T_e) = \langle \sigma v \rangle (s^{-1} \text{ cm}^3)$ and say $(I_{ji} =) n_j A_{ji} = n_e n_i Q_{ij}$
- Emission Measure for unresolved volume $EM \equiv \int n_e n_H dV = 4\pi d^2 F_{ji} / Q_{ij}(T_e) f_q(T_e) A_Z$
- Should EM be the same for different lines?
- Generally, Emission Measure Distribution
 EMD(T) = dEM / dT

Survey of Atomíc Processes

- Basically, all permutations on reactions of ions, electrons, and photons
- Two body reactions and threesomes
- Resulting in ionization, recombination, excitation, de-excitation, emission, and absorption of photons
- Not all processes are relevant for a given plasma
- The challenge of plasma spectroscopy is to identify the important processes for a given plasma

Continuum Processes

中心,在这些的学校,我们是我的学校,我们是我的人的

- Bremsstrahlung (braking radiation)
 X^{+q} + e^{-*} => X^{+q} + e⁻ + hv
- Bremsstrahlung spectrum (erg s⁻¹ cm⁻³ Hz⁻¹) $\varepsilon_v^{\text{ff}} \propto 6.8 \times 10^{-38} (n_e n_a q^2 / T_{e[K]}^{1/2}) e^{-hv/kTe} g_{\text{ff}}$
 - becomes increasingly important with density, with charge, and maximal for λ_{max} * $T = 7 \times 10^7$ Å K ($g_{ff} \sim 1$)
- Inversely, Bremsstrahlung absorption
- Absorption coefficient $\alpha_v \propto 3.7 \times 10^8 (n_e n_q q^2 / v^3 T_e^{1/2})(1 - e^{-hv/kTe}) g_{ff} \text{ cm}^{-1}$
- Negligible for X-ray frequencies (v > 10¹⁷ Hz)

Continuum Processes (2/4)

A THE MERCHANNER BASTA STATISTICS IN THE REAL PROPERTY INTERNAL PROPERTY IN THE REAL PROPERTY INTERNAL PROPE

- Bound-free processes
- Electron impact (collisional) ionization
 X^{+q} + e^{-*} => X^{+(q+1)} + 2e⁻
- Inversely, three body recombination
 X^{+(q+1)} + 2e⁻ => X^{+q} + e^{-*}
- Excess energy goes to (other) free electron
- Rate of TBR ~ n_e^2 , hence unimportant for vast majority of astrophysical plasma

Contínum Processes (3/4)

A TE WERE WARE WARE AND A COMPARE TO MARKE THE REAL PROPERTY OF THE REAL

- Photo-ionization $X^{+q} + hv \Rightarrow X^{+(q+1)} + e^{-1}$
- Inversely, radiative recombination
 X^{+(q+1)} + e⁻ => X^{+q} + hv
 - excess energy expelled by photon
- Auto-ionization from doubly- or inner shell (Auger) excited levels, X^{+q**} => X^{+(q+1)} + e⁻ e.g. 1s 2/ n'l' => 1s² + e⁻
- Inversely, di-electronic capture
 X^{+(q+1)} + e⁻ => X^{+q**} (1s² + e⁻ => 1s 2/n'l')
 - ion absorbs excess energy
 - radiationless resonant process well defined E(e-)

Contínuum Processes (4/4)

- Di-electronic recombination 2 step process
 X^{+(q+1)} + e⁻ => X^{+q**} => X^{+q*} + hv_{df}
 e.g. 1s² (*i*) + e⁻_{id} => 1s 2/ n'l' (d) => 1s² 2/(f) + hv_{fd}
- Same initial and final states as RR
- Quantum interference? $\alpha \propto |\langle f| T^{RR} + T^{DR} |i\rangle|^2$
- Excitation-Autoionization also 2 step process $X^{+q} + hv_{fd} \Rightarrow X^{+q^{**}} \Rightarrow X^{+(q+1)} + e^{-1}$ or (resonant) electron impact $X^{+q} + e^{-*} \Rightarrow X^{+q^{**}} + e^{-1} \Rightarrow X^{+(q+1)} + 2e^{-1}$
- Important only with energetic photons/electrons

Bound-Bound Transitions

- Spontaneous photon (line) emission
 X^{+q*} => X^{+q} + hv_{ii}
- Inversely, photo-excitation (~ resonant scattering)
 X^{+q} + hv_{ii} => X^{+q*}
- Induced photon emission $X^{+q^*} + hv_{ii} \Rightarrow X^{+q} + 2hv_{ii}$
- Electron impact (collisional) excitation
 X^{+q} + e^{-*} => X^{+q*} + e⁻
- Inversely, electron impact de-excitation
 X^{+q*} + e⁻ => X^{+q} + e^{-*}
- Resonant excitation via di-electronic capture X^{+(q+1)} + e^{-*} => X^{+q**} => X^{+(q+1)*} + e⁻ (interference?)

Related Notes

- Close coupling methods treat X^{+q} + e⁻ as one quantum mechanical system with both bound and continuum states
- Complicates the atom, but resonant processes (RE, EA) arise more naturally
- Ion-ion collisions much less important due to both repelling charges and low ion velocities ($Q \propto v$)
- Charge exchange collisions with neutrals could be important in interfaces of ionized and neutral gas
- Common in bulk motion scenarios (solar wind, SNRs), and in interactions of neutral gas with cosmic rays (Galactic center)

Thermodynamic Equilibrium and Detailed Balance

- In Thermodynamic equilibrium (TE), the level populations and spectrum are determined by statistical physics and the equations: Boltzmann, Planck, Kirchoff, Saha, Maxwell-Boltzmann
- In terms of atomic processes, each reaction is balanced by its inverse reaction
- The principle of detailed balance is used to derive relations between transition rates in TE, but since the resulting expressions involve only atomic quantities, the relations hold in any plasma

Detailed Balance: Example

- Auto-ionization and di-electronic capture (level d) X^{+q**} <=> X^{+(q+1)} + e⁻ (level i)
- In TE the rates (cm⁻³ s⁻¹) are balanced locally $n_d A^a_{di} = n_e n_i \beta^{DC}_{id}(T)$
- But in TE also, the populations are given by the Saha + Boltzmann equations $n_d/n_e n_i = (g_d/2g_i)(2\pi\hbar^2/mkT)^{3/2}e^{(-Edi/kT)}$
 - => $\beta^{DC}_{id}(T) = (g_d/2g_i)(2\pi\hbar^2/mkT)^{3/2}e^{(-Edi/kT)}A^a_{di}$
- Since this is a relation between atomic quantities it is general and valid in any plasma

Detailed Balance: Example (2/2)

- The shares and the shares of a stand of the shares it will be a stand of the shares and the share of the shares and an
- If one is bothered by the temperature, and one should, detailed balance is valid just the same for the cross section or rates per dE interval
- DC being a resonant process $\sigma^{DC}_{id}(E) = R^{DC}_{id}\delta(E-E_{di})$, where $R^{DC}_{id} \equiv \int \sigma^{DC}_{id}(E)dE$ is the resonance strength
- Since $\beta^{DC}_{id} = \int \sigma^{DC}_{id}(E) vf(E,T) dE$, it is easy to show $R^{DC}_{id} = (g_d/2g_i)(\pi^2\hbar^3/mE_{di})A^a_{di}$

with truly exclusive atomic quantities that obviously cannot depend on the plasma

Laboratory and Astrophysical Plasma Regimes

A TE SERVICE THE SAFE STORE STORE & SHOW IT'S DESCRIPTION OF THE SECTION OF THE S

Fig. 1.3. Plasma parameters realized in the nature and various technical devices: 1, solar corona; 2, tokamak; 3, laser-induced fusion facility; 4, Sun core; 5, Z- and θ -pinch; 6, stellarator; 7, gas lasers; 8, plasmotron; 9, Sun chromosphere; 10, plasma of hydrocarbon fuel combustion products; 11, electric arcs; 12, cathode spot; 13, spark; 15, MHD generator utilizing non-ideal plasma; 16, semiconductor plasma; 17, metal-ammonia solutions; 18, metals.

Local Thermodynamic Equilibrium

A TE SERVICE THE SAFE FLORE BUILDING & SHOOTER'S CONTRACT ON AN ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS ADDRE

- Collision
- Not full process
- TE prop $n_j/n_i = ($
- For coll radiativ
- Require $n_e >> 4.8$
- · How do
- Clearly except (The Important), 5, 500 choice, 13, 5 utilizing non-ideal plasma; 16, semiconductor plasma; 17, meta metals.

Fig. 1.3. Plasma parameters realized in the nature and various technical devices: 1, solar corona; 2, tokamak; 3, laser-induced fusion facility; 4, Sun core; 5, Z- and θ -pinch; 6, stellarator; 7, gas lasers; 8, plasmotron; 9, Sun chromosphere; 10, plasma of hydrocarbon fuel combustion products; 11, electric arcs; 12, cathode spot; 13, spark; 15, MHD generator utilizing non-ideal plasma; 16, semiconductor plasma; 17, metal-ammonia solutions; 18, metals.

ional trum, E.g., , Kirchoff) te over $Q_{ji} \gg A_{ji}$ ion

l j?

heres

plasmas

Local Thermodynamic Equilibrium

- Collisionally dominated plasma
- Not full TE: Equilibrium between collisional processes only, but not radiation field
- TE properties hold except Planck spectrum, E.g., $n_j/n_i = (g_j/g_i) e^{(-E_ij/kT)}$ (& Maxwell, Saha, Kirchoff)
- For collisional de-excitation to dominate over radiative decay for excited level (j) $n_e Q_{ji} >> A_{ji}$
- Requires high density => Wilson criterion
 n_e >> 4.8×10¹⁸ q⁶ (kT/1keV)^{1/2} cm⁻³
- How does this depend on specific level j?
- Clearly, invalid for most astrophysical plasmas except (the important) stellar atmospheres

LTE Regime

Fig. 1.3. Plasma parameters realized in the nature and various technical devices: 1, solar corona; 2, tokamak; 3, laser-induced fusion facility; 4, Sun core; 5, Z- and θ -pinch; 6, stellarator; 7, gas lasers; 8, plasmotron; 9, Sun chromosphere; 10, plasma of hydrocarbon fuel combustion products; 11, electric arcs; 12, cathode spot; 13, spark; 15, MHD generator utilizing non-ideal plasma; 16, semiconductor plasma; 17, metal-ammonia solutions; 18, metals.

Atomíc Level-Population Kinetic Equations

of The shares and the shares of the shares of the second second and the second second

- Non-LTE brute-force: Include all processes in transition-rate matrix
- For each level i (1 ... N) dn_i/dt = + (populating)
 - (depleting) rates
- J_{ν} may require proper radiative transfer
- Need to solve set of N linear equations
- For N levels, how many independent equations?

$\frac{d}{dt}$	(n ₀))	$\hat{T}(n_{e}, T_{e}, J_{v})$	$\binom{n_0}{\cdot}$? = 0
				(<i>n</i> _N)	

Coronal Approximation

- High-Tlow-*n* Optically-Thin Plasmas $(J_v = 0)$
- Rates $(n_e^2) \ll$ Rates $(n_e) \ll$ Rates (spontaneous)
 - 3-body recombination not important
 - Collisional processes from excited levels dominated by spontaneous radiative decays
 - Left with collisional processes from ground levels and radiative processes from excited levels
- <u>Atomic processes: Collis. ionization (including EA),</u> radiative recombination (including DR), collisional excitation, radiative decay (including cascades)
- Ions basically in their ground state
- Ionization decoupled from excitation

Coronal Approximation (2/5)

- A TE WAR STREET SAFET STORE SHOULD BE A MADER OF STORE STO
- Leads to very simple expressions
- Steady state excitation $n_e n_i Q_{ij}(T) = n_j \Sigma A_{jx} \Rightarrow n_j / n_i = n_e Q_{ij}(T) / \Sigma A_{jx}$
- Unlike LTE (Boltzmann), depends on rates & n_e
- Line ratios independent of density
- Steady state ionization balance
 - $n_{q-1}S_{q-1\to q}(T) + n_{q+1}\alpha_{q+1\to q}(T) = n_qS_{q\to q+1}(T) + n_q\alpha_{q\to q-1}(T)$
- Since for q=0 $n_0 S_{0\rightarrow 1}(T) = n_1 \alpha_{1\rightarrow 0}(T)$
- The general solution is: $n_{q+1}/n_q = S_{q \rightarrow q+1}(T) / \alpha_{q+1 \rightarrow q}(T)$

Coronal Approximation (3/5)

- Ionization balance depends on atomic rates (and T), but not on n_e , opposite from LTE (Saha)
- Exponentially narrow formation region for each ion
- Ion emission typical of same temperature always
 => Best plasma thermometers, even with EMD

Coronal Approximation (4/5)

- Approximation breaks down for
 - Meta-stable levels (forbidden decay)

STATISTICS.

- Close (high) lying levels $Q_{jk} \propto E_{jk}^{-1}$; $S_{j\infty} \propto E_{I}^{-2}$
- Effect of "continuum lowering" to "thermal limit" where high-lying levels => LTE, and are more likely to be excited or ionized than to decay radiatively
- Effect other than density with same result?
- These high lying levels effectively become part of the continuum (q+1) via electron impact ionization, thus modifying the ionization balance equations

Coronal Approximation (5/5)

- A TELEVISION STATE SAFET SAFETY SAF
- The higher n_e, the more levels depart from "coronal" and tend to "thermal"
- Requirement for small effect used to determine validity of approximation, say Sthermal << S
- Results in another Wilson criterion $n_e < 4 \times 10^{21} q^{-1} (kT/1 keV)^4 cm^{-3}$
- Intermediate densities (laboratory plasmas) hardest to model
- How do populations & ionizations compare with LTE? Are they higher? lower?

Coronal Regime

A TE WING THE BASIC STOCKED BY MORE PROPERTY STOCKED IN A ROW PLANT AND A

Fig. 1.3. Plasma parameters realized in the nature and various technical devices: 1, solar corona; 2, tokamak; 3, laser-induced fusion facility; 4, Sun core; 5, Z- and θ -pinch; 6, stellarator; 7, gas lasers; 8, plasmotron; 9, Sun chromosphere; 10, plasma of hydrocarbon fuel combustion products; 11, electric arcs; 12, cathode spot; 13, spark; 15, MHD generator utilizing non-ideal plasma; 16, semiconductor plasma; 17, metal-ammonia solutions; 18, metals.

Collisional-Radiative Model

- Intermediate density, but optically thin
- Includes cascades and collisional transitions to/from excited levels $\Sigma n_x A_{xj} \approx n_e n_j \Sigma Q_{jy}(T)$ $\approx n_i \Sigma A_{jz}$
- Need to solve transition matrix (for ionization?)
- Normalize and assume no particle losses (laboratory)

Collisional-Radiative Model (2/3)

LADAUS STATE STATE

- Unlike coronal, excited levels can be (depending on T_e , n_e) significantly populated
- Provides density sensitive line ratios
- Forbidden lines in laboratory plasmas? Can you think of alternative density diagnostics?

Collisional-Radiative Model (3/3)

- Resonant scattering: line photons can be absorbed and re-emitted, unless strong velocity shear
- Other absorption "hazards", how important?
- Only resonant lines?
- Affects level populations, and obviously spectrum
- Effect can be approximated by transmission corrections (escape-factor) to rates: $n_j A_{ji} T_{ij}$ $0 < T_{ii} = \exp[-N(\pi e^2/mc)f_{ii}\phi(v)] < 1$
- N = ∫ ndl column density, f_{ij} oscillator strength, and φ(v) - profile, generally Voigt profile, but dominated by Doppler broadening
- Think of geometrical effects in extended sources

Nebular Approximation

A THE MERICAN STATE SHARE A SUCCESSION OF A MADERIAL CONTRACT OF A MADERIAL CONTRACT.

- Plasma at least moderately optically thick to external source, but density still low
- Steady state ionization determined not by temperature, but by balance between photo-ionization (~F_E spectrum) and recombination (n_e): n_q ∫ F_Eσ^{PI}(E)dE = n_{q+1}n_eα(T_e)
- Ionization $n_{q+1}/n_q \propto F/n_e \propto L/n_e r^2 \equiv \xi$
- Unlike coronal approximation, does depend on density. Where else does ionization depend on n?
- With no additional energy source, T not independent parameter, depends on photo-heating and cooling

Nebular Approximation (2/3)

A TE WARDEN SHE SHE STORE STOR

- T_e insufficient for electron impact excitation / ionization
- Lines (& RRC) then driven by RR and PE
- Depend on optical depth
- Line ratios may depend on ionization balance (not decoupled)
- Why PE more effective than PI?

Absorption

Emission

16

17 18 19 20 21 22 λ[Å]

Nebular Approximation (3/3)

The second second second second is the second s

Transient Plasma

A THE MERCHANNER SAFER STONE S

- What are the important X-ray plasma time scales?
- Use Coulomb collision theory (Spitzer 1956) neglecting collective plasma effects
- Individual-species temperature acquisition times through self collisions T_e , T_{ion}
- In velocity-driven excitation (shock) $T_e \ll T_{ion}$
- Much longer equilibration time for $T_e = T_{ion}$
- Ionization times ~ 1 / $n_e S_{q \rightarrow q+1}$
- Usually used within coronal approximation (low n)

Transient Plasma (2/6)

A TREADER STATE SAFE STATE A MARKET A MAR

Temporal Hierarchy

$$t_{c,e} = 10.4 \left(\frac{k_B T_e}{1 \text{keV}}\right)^{3/2} \left(\frac{1 \text{cm}^{-3}}{n_e}\right) \text{yrs}$$
$$t_{c,ion} = 530 \left(\frac{k_B T_{ion}}{1 \text{keV}}\right)^{3/2} \left(\frac{1 \text{cm}^{-3}}{n_{ion}}\right) \frac{A_{ion}^{\frac{1}{2}}}{Z^4} \text{yrs}$$
$$t_{eq} = 23,000 \left(\frac{k_B T_e}{11-Y}\right)^{3/2} \left(\frac{1 \text{cm}^{-3}}{Q^2}\right) \left(\frac{A_{ion}}{Z^2}\right) \text{y}$$

$$t_{ionization} = \frac{1}{n_e \alpha^R(T_e)} \left(\frac{1000}{n_{ion}}\right) \left(\frac{1000}{Z_{ion}^2}\right) \text{yrs}$$

Transient Plasma (3/6)

- Transition matrix of electron impact ionization and recombination rates
- In coronal approximation depends on T_e and $\propto n_e$
- If rates (T) constant, analytical solution possible by recasting T with similar diagonal matrix $T = S^{-1}DS$ (eigenvalues λ_i in diagonal)
 - How to normalize?

Transient Plasma (4/6)

- Set of independent differential equations (for Sn)

Transient Plasma (5/6)

• $n_{a}(t)$ is sum of exponentials with typical time scales

STREET STATE STATES

- With independent measure of T_e , ion ratios can be used to deduce $n_e t$
- Using emission measure and volume estimate, can disentangle time (t) from density (n_e)

Transient Plasma (6/6)

- Slowly approaches steady state
- In last stages only two relevant charge states remain, n_q and n_{q-1} (= 1 - n_q)

A STORAGE STORAGE STORAGE

• The rate equation then is simply $dn_q/dt = n_e (n_{q-1}S_{q-1\rightarrow q} - n_q\alpha_{q\rightarrow q-1})$ whose solution is

 $n_{s} = S/(S + \alpha) (1 - e^{-ne(S + \alpha)t})$

- Tends exponentially to steady state within times $t_{ss} \approx 1 / n_e(S + \alpha) \approx 10^{12} / n_e \sec \sim 100,000 / n_e \text{ yrs}$
- Excited-level lifetimes are considerably shorter
 <10⁻⁸ s, don't affect transient ionization/recombin.

Recap: Models & Diagnostics

A THE MERCHANNER SAFER STATISTICS IN THE REPORT OF THE REP

- Coronal model:
 - Temperature (EMD) from charge states independent of n (and less from inter-ion lines and from bremsstrahlung)
 - Abundances
- Collisional-radiative:
 - Cascades, density (and temp) from forbidden lines
 - Optical depth (and position) from line quenching
- Nebular:
 - Temperature from RRC width
 - Combination of [density + position] from charge states
 - Column density from absorption & emission
- Transient plasma
 - Ionization time, but temperature?
 - Density and time from emission measure

Acknowledgments

• I am greatly indebted to

- Prof. J. L. Schwob from whom I learned most of what I know about laboratory plasma spectroscopy and whose renown graduate course is at the physical basis of this presentation
- The organizing committee that allowed me to present an hopefully insightful but clearly least practical - talk in this important hands-on spectroscopy school
- NASA's NPP program for senior scientists that has been supporting me at NASA/GSFC for the past two years, and has enabled my trip to MSSL

