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1. NEIl models

 NEI = Non-Equilibrium lonisation

* In most cases, plasmas assumed to be in
Collisional lonisation Equilibrium (CIE):

nz+’IRz+1(T) 'anz(T) +nz-1|z-1(T) 'nzlz(T) =0
* R(T) & I(T) (recombination & ionisation
rates) only depend on T =» n_(T) only

function of T
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NEI: basic principle

 When T changes, ion concentrations need
to adjust

» Change occurs through collisions: T
higher, more collisional ionisation; T lower:
more radiative & dielectronic
recombination

* How fast plasma adjusts, depends on
average collision time (read: density)
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NEI: basic equation

d
nlA.t)=AZ,T(t))n(Z. 1)
nalt) di
(—ID R, 0 0 \
Iy, —(IL+FR,) R, 0
0 I,
A= : . :
. Ry 0
0 Iz2 —(Iz-1+Hz1) Rz
\ .0 Iz_1 —Rg)

See Kaastra & Jansen (1993) on how to solve this;

Solution depends on | n (t) dt
SRON



Simple way:

* Use CIE model in SPEX

« Parameter RT is ratio of T(balance) /
T(spec)

* lonisation balance (equilibrium) calculated
using T(balance)

« Spectrum evaluated using T(spec)
 NON-physical model, but gives rough idea
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Examples

T=0.2 keV RT=1 (equilibrium)

Madel spectrum
T=0.2 keV, RT=1
SPEX Wersion 2,00 Sat 14 Mar 2009 23:51:119
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T=0.2 keV RT=0.5 (underionised)

Model spectrum
=0.2 kaV, RT=0.5

o SPEX Wersion 2.00 Sat 14 Mar 2000 23:51:19
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T=0.2 keV RT=2.0 (overionised)
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The NEI model of SPEX

T |

T2

T1

time -->

Describes response of plasma jumping from T1
to T2

Usually T1 low (e.g. 10% K, almost neutral gas)
Time dependence through U=)n,_ dt

For U—~, plasma reaches equilibrium

In practice often for U=101" m-3s
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Example of NEI| spectra

Log U=12 Log U=14
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Examples of NEI| spectra

« Supernova remnants (n=1 cm=3, t=1000 yr)
« Stellar flares (n=10""m>3, t =10 s)
 Cluster outskirts? (n=100 m=3, t =108 yr)
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Did you know that ...

* You can make T1>T2
to mimic a
recombining plasma
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2. DEM Modelling

» Usual approach:

e Try 1T

* If fit not good, try 2T
* If still not good, try 3T

« Ad infinitum & often unstable (strong
correlations between components)

 How to do a better job?
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Basic concept: DEM

* In real sources, emission measure
(Y=In_n,dV) is integral over region with
different physical properties

* T needs not to be constant over region
(clusters, coronal loops, etc.)

* Introduce DEM = Differential Emission
Measure, as function of T

- [DEM (T)dT =Y
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Challenge with multi-T plasmas

* Line spectra
Insensitive to details |
DEM within T-range | ﬂ
of factor 2 !

« All DEMs in example i
have same <T>and 2]
almost 5|
indistinguishable
spectrum

* = bin T-range with
steps of factor 2
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DEM techniques

« Make a library of basis spectra F.(E) for a
grid of temperatures

* Solve the equation:

S(E)=2 Y; F{(E)

 S(E) Is observed spectrum

* Y. are the (differential) emission measures
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S

Example: AR Lac
(Kaastra et al. 1996)

10

Fit to Rosat PSPC &
ASCA GIS & SIS
spectra

PSPC (x 0.05)

Counts/s/keV

0.01
T

SISO (x

10)

CL
0.2 0.5 1 2
Energy (keV)

RON
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Regularisation method: principles

« Solve S(E)=2 Y. F.(E)
* using constraint that 2" order derivative Y,
IS as smooth as possible

* Degree of smoothing controlled by
regularisation parameter R (essentially
smoothness / x?)

* R adjustable (R=0: no smoothing)

17
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Pro and contra regularisation

* Advantage: damp unwanted oscillations
* Disadvantage: solution can be negative

 SPEX solves this by introducing the "DEM

penalty”: B
p= Y (Yi/AY)
Y, < 0

Advice: add p to x? for tests of goodness

18
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Regularisation method: practice

¢ A” th ree o IFEelgL.lllolril'slojcion me’tlhodI | I,Iﬁ\l - -
solutions B . 7#*%* H}L _
shown here - ++ I o3 +$ I
acceptable 2o \_*L’% WJ | LH
qg i Jﬁ R=0.02 ¥°=225.7 p=10.2 |
G ! R=0.20 ¥°=229.1 p=21.3
E L

1 1 1 I 1 1 1 1 1 1 1 1
0.1 1
T (keV)
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Polynomial method

 Model here log DEM(T)

as an n-th degree S e
. Chebyshev polyromial method (26 bins, 0.03 — 10 keV)

pOIyn0m|a| - n=8 ¥’=238.8

* ncan be chosen, to get
lowest x2 =

 Example here: n=8, 9 or §
10 all give acceptable fits; ¢
look to the differencein & |
solutions

« Works good for smooth o bt e

T (keV)

DEMS

20
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Polynomial method Il

* Higher degrees of
polynomial do not
provide better fit

They also are more
spiky

* Advise: choose
minimum n with
acceptable x? (e.g., X2
N X2min +1)

MNetherlande Institute for Space Research

ap]

Emission measure (10°° m™3)

4
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o

Chebyshev polyromial method (26 kins, 0.3 — 10 keV)
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Clean method

 Clean method: derived
from radio beam
synthesis methods
(Hogbom 1974)

« Adds small (low Y)
components that glve
best improvement x? unt|I
convergence is reached

« Works good for “spiky”
DEMS
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Genetic algorithm

« Uses geneitic algorithm
(PIKAIA, Charbonneau
1995) to find minimum
solution

« Example: results of 25
runs

« Sort solutions according
to x?2
* Pick out best solutions

SRON
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Number of -uns

Distrbution of ¥? for 25 runs with the genetic algorithm

accepted scluticns -

discarded soluticns - J

240 245 250 255
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Genetic algoriothms I

* Doing multiple runs,
you get an idea of
allowed range of
solutions

SRON
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o 58 -3
Emission measure (1077 m™7)

4

GCenetic clgorthm

Best solution

Allowed solution range "
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Multi-temperature method

 Alternative: use

m u Iti p I e G a u SS i a n | IBrclmld;nleldl multi—’;empleralturle Irrlmelﬂlw:)d
components (inlog T) ..~
* Works good for |
bimodal distributions :
* Not always
convergence, check * |
the x? (as for any

(10%° m

™~

DEM method) I

T (keV)
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o

Comparison DEM methods |

* |nput model: two

delta-lines @ 0.6 &
2.4 keV

« See how different
methods perform

RON
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T T T T T T T I T
Simulation: 2 §—lines
L Model distribution

L Chebychev pelynomials

ol
0.1

T (keV)
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o

Comparison DEM methods ||

* |nput model
continuous
distribution between
0.6 @ 2.4 keV

« See how different
methods perform

RON
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Emission measure (10°% ™)

2

1

0

- Simulation: block profile
| Model distribution

L Chebychev pelynomials

0.1 1
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3. Extended sources

 Two main challenges:
* Multi-temperature structure

* For grating spectra, additional spectral
broadening due to way gratings work,
usually AA=c AB =» degradation of
resolution, depending upon spatial
distribution photons along dispersion axis
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WDEM model

We also try to model the emussion of the hot plasma with
a differential emission measure (DEM) model with a cut-oft
power-law distribution of emussion measures versus tempera-
ture (wdem). The wdem model appears to be a good empiri-
cal approximation for the spectrum i cooling cores of clus-
ters of galaxies (e.g. Kaastra et al. 2004; Werner et al. 2006;
de Plaa etal. 2006). The emission measure ¥ = _I['nE}THdV
(where ne and ny are the electron and proton densities__ F is
the volume of the source) in the wdem model 1s specified 1n

Eq. (1) adapted from Kaastra et al. (2004):

(1)

dy [ ATY® Twin < T < Tax.
dr | 0 elsewhere.

The emission measure distribution has a cut-oft at Ty =
€ Tmax. FOr v — oo we obtain a flat emission measure distribu-
tion. The emission measure weighted mean temperature Tiean
15 given by:

S
== g TdT

S — .
Jro" &dT

(2)

Tmﬁan =

By mtegrating this equation between Ty and Tyax We obtain
a direct relation between Tinean and Tmsx a5 a function of o and
€

(]- + ]_l,-"{r](]_ — Cl"l‘“'zj
(2 + ]-l."l{f](]_ - fl."-::r+'_:| max-

(3)

Tmﬁan =

A comparison of the wdem model with the classical cooling-
flow model can be found in de Plaa etal. (2005). We note
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Extended source example: Crab

« Shown is MOS1
Image

* Image collapsed Iin
cross-dispersion

direction and '
projected onto

dispersion axis RGS

—

Dispersion direction

30
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Effective line-spread function

* Plot shows spatial

profile projectedonto | " W\A """ _
dispersion axis '

tive probability (87")
pa 3
//
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How is this implemented in SPEX"?

* Provide an ascii file with two columns:
cumulative probability distribution
(between 0 and 1) versus A

* Define the “lpro” component, and point
there to the proper filename

* Apply the Ipro component to any additive
component in model that is broadened

* You can have multiple Ipro components,
with different files

32
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o

Example: Fit to RGS Crab
spectrum

« The Ol 1s-2p line @
23.5 A (& full
spectrum) clearly

gx10?

broadened by spatial - -

extent Crab

« Why is fit not perfect? *

(answer: dust)

MNetherlande Institute for Space Research
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4. Some other models in SPEX

* Emission models
 Convolution models

34
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Other emission models in SPEX

 Cf: classical cooling flow model

* Spin: sp
* File: tab

ine (continuum)
e model

o Refl: ref

ection model Zycki

« SNR models (Sedov, Band, Chevalier,
Solinger)

 Rrc: radiative recombination continua

e elc

MNetherlande Institute for Space Research
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Convolution models

» Laor profiles (relativistic lines)

« Gaussian broadening (vgau)

« Rectangular broadening (vblo)
 Arbitrary velocity broadening (vpro)

MNetherlande Institute for Space Research
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Other goodies

» Sectors & regions: see SPEX manual

MNetherlande Institute for Space Research

37



Cooling flows

* Isobaric cooling gas:

% %
> Ed
£ e

Fe xvil
Fe xviI
Fe XIX
Fe XX
Fe »XI
Fe %Xl
Fe XXl
Fe XXM

dY  5kM
dT  2um,, A(T)

dY/dT (107 m™ / Mg yr™ ")

o L L L

0.1 1 10
Temperature (kev)
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