### High-resolution X-ray Spectroscopy of the Planetary Nebula BD+30 3639

#### MSSL Spectroscopy Workshop 3 Mar. 19. 2009

Young Sam Yu, Joel Kastner

Rochester Institute of Technology, USA

#### John Houck

Massachusetts Institute of Technology, USA

#### Ehud Behar\*, Noam Soker

Technion-Israel Institute of Technology, Israel \*Goddard Space Flight Center, USA

Raanan Nordon, Max-Plank-Institut fur extraterrestrische Physik, Germany

### Outline

- Stellar evolution of Intermediate massive star
- What are the Planetary Nebulae (PNe)?
- X-ray emission scenarios in PNe
- History of X-ray observation of BD+30°3639
- Chandra Observation of BD+30°3639 with LETG/ACIS-S
- Model fitting and Interpretation
- Conclusions

# Evolution of star along the H-R diagram



### What are planetary nebulae?

- Last stages of evolution for stars of initial mass(1-8M<sub>•</sub>)
- PN: ejected red giant envelope ionized by newly unveiled stellar core (emerging white dwarf)
- PN shapes likely generated by interacting (red giant and white dwarf) stellar winds



NGC 7027: planetary nebula poster child

### X-ray emission from PNe

- Photoionized gas in PNe is far too cool to emit X-rays
- The central stars are at best source of very soft X-rays
- Theory predicts two types of structures may be caused by wind-wind shocks in planetary nebulae:
  - Hot bubble predicted by classical (quasi-spherical) interacting winds theory
  - Collimated outflows and "jets"
  - => X-ray observations are essential to verify & distinguish scenarios

### The planetary nebula BD+30°3639

#### Basic data:

**Distance from Earth :** 1.2 kpc **Dimensions**: 4 X 5" (~0.02 pc) **Dynamical age :** less than 1000yr

Central Star: Carbon-rich Wolf-Rayet type Temp : 30,000K Mass loss rate : ~10<sup>-6</sup> M<sub>solar</sub>/ yr Wind speed: ~700 km/s



First X-ray image of a hot bubble within a planetary nebula Left: HST [SIII] image; right: Chandra X-ray image (0.3-2.0 keV) (Kastner et al. 2000)

#### Previous results from X-ray CCD spectroscopy: Fitting models to BD+30°3639 spectra

| telescope<br>(instrument) | N <sub>H</sub> (10 <sup>21</sup><br>cm <sup>-2</sup> ) | T <sub>X</sub> (10 <sup>6</sup> K) | abundances                                               | reference                  |
|---------------------------|--------------------------------------------------------|------------------------------------|----------------------------------------------------------|----------------------------|
| ROSAT (PSPC)              | 1.4*                                                   | 2.5                                |                                                          | Kreysing et al<br>(1992)   |
| ASCA (SIS)                | 1.2*                                                   | 3.0                                | C greatly enhanced;<br>N, Ne enhanced;<br>Fe depleted    | Arnaud et al.<br>(1996)    |
| Chandra (ACIS)            | 1.0                                                    | 2.7                                | C, Ne enhanced;<br>Fe depleted                           | Kastner et al.<br>(2000)   |
| Chandra (ACIS)            | 2.5                                                    | 2.1                                | C, Ne greatly enhanced;<br>N, O enhanced;<br>Fe depleted | Maness et al.<br>(2003)    |
| Chandra (ACIS)            | 2.0                                                    | 2.4                                | No useful constraints!                                   | Georgiev et al.<br>(2006)  |
| SUZAKU                    | 2.1                                                    | 2.2                                | C, N, Ne greatly<br>enhanced;<br>Fe depleted             | Murashima et al.<br>(2006) |

\*  $N_{\rm H}$  constrained by  $A_{\rm V}$  for PSPC and SIS model fits

#### Dispersed spectral images of BD+30°3639

We obtained observations of BD+30°3639 totaling 300 ks exposure time with LETG/ACIS-S during the CXO Cycle 6

5 to 40 Å for  $\pm$  1 order from first-epoch (Feb+Mar, 2006; Lower Two) and second-epoch (Dec, 2006; Upper Two) observatin.

### Combined positive and negative first order LETG/ACIS-S Spectrum

BD +303639: LETG/ACIS 1st-order spectra (300 ks)



### Model Fitting

#### **One Temperature model**

BD +303639:APED model fit with one Temp & two vturb in counts

#### Two Temperature model

BD +303639:APED model fit with two Temp & two vturb in counts



Yu et al. 2009, ApJ, 690, 440Y

#### Results

- Temperature of shocked plasma:  $T \sim (1.7 2.9) \times 10^6 \text{ K}$
- Hydrogen column density :  $\log N_H(\text{cm}^{-2}) = 21.4$
- Plasma abundances, relative to solar:
  - C/O ~ 32.5 (yes, C is very overabundant!)
  - Ne/O ~ 3.8 (yes, Ne is overabundant)
  - Fe/O ~ 0.2 (yes, Fe is quite depleted!)
  - $N/O \sim 0.4$ (yes, N is quite depleted)
  - Mg/O  $\sim$  0.7 (yes, Mg is depleted)

### Comparison to previous study

| Parameter                                               | A96<br>ASCA/SIS | K00             | M03<br>Chandra/ACIS-S3 | G06            | M06<br>Suzaku/XIS | This Paper<br>Chandra/LETG/ACIS |
|---------------------------------------------------------|-----------------|-----------------|------------------------|----------------|-------------------|---------------------------------|
| N <sub>H</sub> (10 <sup>22</sup> cm <sup>-2</sup> )     | 0.12            | 0.1 [0.09–0.11] | 0.24 [0.23-0.25]       | 0.2 [1.7–2.3]  | 0.21[1.4-2.5]     | 0.24 [0.20-0.28]                |
| L <sub>X</sub> (10 <sup>32</sup> ergs s <sup>-1</sup> ) | 1.3 - 1.7       | 2.3             |                        |                | 12                | 8.6                             |
| T <sub>1</sub> (10 <sup>6</sup> K)                      | 3.0 [2.7-3.3]   | 2.7 [2.6-2.8]   | 2.1 [2.08-2.12]        | 2.4 [2.1-2.6]  | 2.2 [2.1-2.3]     | 2.9 [2.6-3.3]                   |
| $T_2 (10^6 \text{ K})$                                  |                 |                 |                        |                |                   | 1.7 [1.3-2.1]                   |
| Fe/O                                                    | 0               |                 | 0                      | 0.3 [0.1-0.8]  | < 0.1             | 0.2 [0.1-0.4]                   |
| Ne/O                                                    | 8.3             |                 | 4.6 [3.9-5.3]          | 5.4 [0.1-57.7] | 5.8 [4.7-7.5]     | 3.8 [3.3-5.0]                   |
| C/O                                                     | 281             |                 | 84 [79–90]             | 97 [8.1-813]   | 85 [71-101]       | 32.5 [15-45]                    |
| N/O                                                     | 7.2             |                 | 2.2 [2.0-2.3]          | 5.8 [1.3-80.1] | 3.2 [0.9-5.5]     | 0.4 [0.0-1.0]                   |
| Mg/O                                                    |                 |                 | 0.24 [0.22-0.26]       | 0.3 [0.1-0.8]  |                   | 0.7 [0.4–1.5]                   |

**References.** A96 = Arnaud et al. 1996; K00 = Kastner et al. 2000; M03 = Maness et al. 2003; G06 = Georgiev et al. 2006; M06 = Murashima et al.2006; This paper= Yu et al. 2009

### Interpretation

#### • X-ray temperature (T<sub>x</sub>)

- Two temperature represents the temperature gradient within the hot bubble.
- lower than expected from a simple adiabatic shock model (700 km/s wind should produce a few x 10 million degree plasma)
- Possible scenarios
  - Shocked wind presently seen in X-rays was ejected at earlier epoch, when the "fast wind" was slower (~400km/s)

#### C/O overabundance

- Triple alpha process produces <sup>12</sup>C and <sup>16</sup>O in the intershell.
- He shell burning and subsequent dredge-up (AGB "third dredge-up") brings intershell products (C, s-process elements) to the surface

#### • Ne/O over abundance, Fe/O, N/O depletion

- S-process within pulse-driven convection zone (PDCZ) ), associated He shell burning
- <sup>14</sup>N +  $\alpha$  -> <sup>18</sup>O(Burnt in He shell burning) -> <sup>22</sup>Ne <sup>18</sup>F
- <sup>22</sup>Ne (and <sup>16</sup>O) is neutron source in s-process and Fe become the "starting material" (or seed) for this neutron capture
- $\Rightarrow$  Therefore, Ne is enhanced but N and Fe is depleted.

The inner layers of a highly evolved star

# AGB stars are carbon factories!

From Herwig (2005, Ann. Rev. Astron. Astrophys.)



### Conclusions

- X-ray emitting gas originates essentially from the "WC star" (From comparison of UV/optical observation for central star; Marcolino et al. 2007)
- Sharply non-solar composition of shocked gas originated from intershell region of AGB star
- Two temperatures indicate the temperature gradient within the wind-collision-generated "hot bubble" of a planetary nebula
- The results will provide constraints on wind collision models

## Thank you!!!