Frank Verbunt
MSSL meeting on high-resolution X-ray spectroscopy
17 March 2009

Outline

- Parent distributions: concept and examples
- Central limit theorem, Gaussian errors and χ^2
- Methods for Gaussian errors: linear, non-linear
- General methods: amoebe, genetic algorithms
- Binning

Excerpted from full notes:
www.astro.uu.nl/~verbunt/onderwijs/observe/lnotes.pdf
based a.o. on Bevington
How not to...

- what is the probability that during this lecture we are hit by a meteorite?
- there are two possibilities: yes/no
- thus the probability is 50%

How to...

Determine
- possible outcomes
- their (relative) probabilities

The combination is the parent distribution. It is never known exactly, always only approximately
expected: μ photons in time T, divide T in n slots

each slot has probability $p = \mu/n$ to receive photon

with n trials the probability of k hits and thus $n - k$ empty is

$$P_B(k, n, p) = \binom{n}{k} p^k (1 - p)^{n-k}$$
- expected: μ photons in time T, divide T in n slots
- each slot has probability $p = \mu/n$ to receive photon
- to avoid 2 photons in 1 trial, take limit $n \to \infty$ with np constant

\[
P_P(k, \mu) = \frac{\mu^k}{k!} e^{-\mu}
\]
expected value μ photons in time T

for large μ the Poisson distribution is well approximated with the Gauss distribution

$$P_G(x, \mu, \mu) \equiv \frac{1}{\sigma \sqrt{2\pi}} e^{-(x-\mu)^2/2\mu^2}$$
Parent distribution: Poisson to Gauss

![Graphs showing Poisson and Gaussian distributions with different parameters](image)

- For the distribution $P_p(x, 1.67)$, the Poisson distribution is shown as a solid line and the Gaussian distribution as a dotted line.
- For the distribution $P_p(x, 5.00)$, the Poisson distribution is shown as a solid line and the Gaussian distribution as a dotted line.
- For the distribution $P_p(x, 10.00)$, the Poisson distribution is shown as a solid line and the Gaussian distribution as a dotted line.
- For the distribution $P_p(x, 15.00)$, the Poisson distribution is shown as a solid line and the Gaussian distribution as a dotted line.

Frank Verbunt (Astronomical Institute Utrecht)

Fitting data

March 17, 2009 7 / 26
Gauss and normal

\[G(x, \mu, \sigma) \equiv \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \]

coordinate transformation:
\[z = \frac{x - \mu}{\sigma} \]
gives normal distribution:
\[P_G(x) = \frac{1}{\sqrt{2\pi}} \exp \left[-\frac{1}{2} x^2 \right] \]

when to use

- binomial: each trial has outcome yes or no
- Poisson: each trial has range of possible outcomes
- Gauss: replaces Poisson for large expectation value
- for photon counts Gauss is never exact: in particular large deviations are more likely in Poisson
Central limit theorem

Concatenation of uncertainties
- The central limit theorem states that a sequence of various distributions applied consecutively will approximate a Gaussian.
- For this reason and for its computational simplicity, the assumption of Gaussian error distributions is often used.

How do we know?
- Once we have a fit, we can plot distribution of the errors and check whether it looks Gaussian.
- In general, the errors are NOT Gaussian.
- But the fit obtained by assuming they are is often not far wrong...
- How far is too far?
Gaussian errors and χ^2 minimalization (Press et al.)

- measurements y_i with associated Gaussian errors σ_i
- i.e. each drawn from a Gaussian around model value y_m
- probability for one measurement y_i, in an interval Δy, is

$$P_i \Delta y = \frac{1}{\sqrt{2\pi}\sigma_i} e^{-\frac{(y_i - y_m)^2}{2\sigma_i^2}} \Delta y$$

The overall probability of a series is:

$$P(\Delta y)^N \equiv \prod_{i=1}^{N} (P_i \Delta y) = \frac{1}{(2\pi)^{N/2} \prod_i \sigma_i} \exp \left[-\frac{1}{2} \sum_{i=1}^{N} \frac{(y_i - y_m)^2}{\sigma_i^2} \right] \Delta y^N$$

The highest probability P is that for which

$$\chi^2 \equiv \sum_{i=1}^{N} \chi_i^2 \equiv \sum_{i=1}^{N} \frac{(y_i - y_m)^2}{\sigma_i^2}$$
Gaussian errors and χ^2 minimalization

The observed χ^2
- N measurements y_i at measurement points x_i
- each y_i is drawn from a Gaussian
- i.e. each $\chi_i \equiv (y_i - y_m)/\sigma_i$ is a draw from the normal distribution
- square all χ_i's and add: $\chi^2 \equiv \sum_{i=1}^{N} \chi_i^2$

In a fit with N measurements and M fit parameters we have $\nu \equiv N - M$ independent draws

χ^2-distribution
- Simulate a measurement by randomly choosing a set of ν values y_i at x_i
- this is called a realization
- compute for many realizations the χ^2, to obtain the χ^2-distribution for ν
- for a Gaussian, this can be done semianalytically
- $\nu \equiv N - M$ is called ‘degrees of freedom’ or d.o.f.
Gaussian errors and χ^2 minimalization

Semi-analytic

- consider the incomplete Gamma function:

 $$Q(a, x) \equiv \frac{1}{\Gamma(a)} \int_x^\infty t^{a-1} e^{-t} dt$$

- the fraction of $\chi^2 > \chi^2_o$ is given by Q with

 $a = 0.5(N - M)$ and

 $x = 0.5\chi^2_o$

- the probability of obtaining a χ^2 as observed or bigger is given hereby

Rule of thumb

- if $\nu \equiv N - M$ is large, then we expect roughly

 $\chi^2 \approx N - M; \chi^2_r \approx 1$

- with a spread $\sqrt{2(N - M)}$

if χ^2 high, Q very small

- the model is wrong

- σ_i under-estimated

- errors not Gaussian or a combination of these... hence: tolerance of ‘low’ Q, e.g. 0.05 or 0.01
Gaussian errors and χ^2 minimalization

Effect of non-reporting
- a person has guessed a 6 digit number correctly
- the probability is 1 in 10^6
- so that person is special!
- unless she/he is one of a million persons who guessed...

If only significant results are published, the significance of published results will be over-estimated.

A good fit
- consists of three parts
 - the best value parameters
 - the uncertainties on these parameters
 - the probability that the model describes the data (either χ^2 and d.o.f. or Q)
See what is wrong, without knowing details...

Number of days/yr

Number of systems vs. M_V

M. Gieles et al.: The luminosity function of young star clusters

- For NGC6946:
 - $\chi^2 = 0.53$
 - $-\alpha_1 = -1.7 \pm 0.2$
 - $M_{\text{break}} = -8.9 \pm 0.4$
 - $M_* = -10.2 \pm 0.6$

- For M51:
 - $\chi^2 = 0.36$
 - $-\alpha_1 = -1.9 \pm 0.2$
 - $M_{\text{break}} = -9.3 \pm 0.4$
 - $M_* = -10.3 \pm 0.5$
\[\chi^2 \] minimalization with linear dependence on model parameter: example weighted average

model \(y_m = a \). Minimize \(\chi^2 \) with respect to \(a \):

\[
\frac{\partial}{\partial a} \left[\sum_{i=1}^{N} \frac{(y_i - a)^2}{\sigma_i^2} \right] = 0 \Rightarrow \sum_{i=1}^{N} \frac{y_i - a}{\sigma_i^2} = 0 \Rightarrow a = \frac{\sum_{i=1}^{N} \frac{y_i}{\sigma_i^2}}{\sum_{i=1}^{N} \frac{1}{\sigma_i^2}}
\]

\(a \) is a function of the variables \(y_1, y_2, \ldots \). If the measurements \(y_i \) are not correlated, we find the variance for \(a \) from

\[
\sigma_a^2 = \sum_{i=1}^{N} \left[\sigma_i^2 \left(\frac{\partial a}{\partial y_i} \right)^2 \right] = \sum_{i=1}^{N} \left[\sigma_i^2 \left(\frac{1/\sigma_i^2}{\sum_{k=1}^{N} (1/\sigma_k^2)} \right)^2 \right] = \frac{1}{\sum_{i=1}^{N} (1/\sigma_i^2)}
\]

In general: if \(y_m \) is a linear function of model parameters \(a_k \) (\(k = 1, M \)) the summations can be done without knowing \(a_k \), and the solution is found directly.
Gaussian errors and χ^2 minimalization

Linear: straight line

$$y_m(x_i, a, b) = a + bx_i$$

Minimize χ^2:

$$\frac{\partial}{\partial a} \sum_{i=1}^{N} \left[\frac{(y_i - a - bx_i)}{\sigma_i} \right]^2 = 0$$

$$\Rightarrow \sum_{i=1}^{N} \left(\frac{y_i - a - bx_i}{\sigma_i^2} \right) = 0 \Rightarrow$$

$$\sum_{i=1}^{N} \frac{y_i}{\sigma_i^2} - a \sum_{i=1}^{N} \frac{1}{\sigma_i^2} - b \sum_{i=1}^{N} \frac{x_i}{\sigma_i^2} = 0$$

Again: sums can be done without knowing a, b: direct solution

Nonlinear example: sine

$$y_m = \sin(ax)$$

Minimize χ^2:

$$\frac{\partial \chi^2}{\partial a} = 0 =$$

$$-2 \sum_{i=1}^{N} \frac{[y_i - \sin(ax_i)]x_i \cos(ax_i)}{\sigma_i^2}$$

One cannot do the sums without a value for a. Hence the solution must be found iteratively

Frank Verbunt (Astronomical Institute Utrecht)
\(\chi^2 \) minimalization with Levenberg-Marquardt

one dimension

far from minimum use

\[a_{n+1} = a_n - K \frac{\partial \chi^2}{\partial a} \]

Close to minimum approximate

\[\chi^2(a) = p + q(a - a_{\text{min}})^2 \]

\[\frac{\partial \chi^2}{\partial a} = 2q(a - a_{\text{min}}) \]

\[\frac{\partial^2 \chi^2}{\partial a^2} = 2q \]

\[\Rightarrow a - a_{\text{min}} = \frac{\frac{\partial \chi^2}{\partial a}}{\frac{\partial^2 \chi^2}{\partial a^2}} \]

more dimensions \(y_m(x, \vec{a}) \)

\[\chi^2(\vec{a}) \approx p - \vec{q} \cdot \vec{a} + \frac{1}{2} \vec{a} \cdot \vec{D} \cdot \vec{a} \]

\[\frac{\partial \chi^2}{\partial a_k} = -2 \sum_{i=1}^{N} \left[\frac{y_i - y_m}{\sigma_i^2} \right] \frac{\partial y_m}{\partial a_k} \equiv -2\beta_k \]

\[\frac{1}{2} \frac{\partial^2 \chi^2}{\partial a_k \partial a_l} \equiv \alpha_{kl} = \]

\[\sum_{i=1}^{N} \frac{1}{\sigma_i^2} \left[\frac{\partial y_m}{\partial a_k} \frac{\partial y_m}{\partial a_l} - [y_i - y_m] \frac{\partial^2 y_m}{\partial a_k \partial a_l} \right] \]

thus \(\beta_k = \lambda \alpha_{kk} \delta a_k \) or \(\beta_k = \sum_{l=1}^{M} \alpha_{kl} \delta a_l \)
\(\chi^2 \) minimalization with Levenberg-Marquardt

<table>
<thead>
<tr>
<th>Matrix Equation</th>
<th>Problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\beta_k = \sum_{i=1}^{M} \alpha_{kl} \delta a_l]</td>
<td>requires reasonably close first estimate</td>
</tr>
<tr>
<td>with [\alpha_{kl} = \sum_{i=1}^{N} \frac{1}{\sigma_i^2} \left[\frac{\partial y_m}{\partial a_k} \frac{\partial y_m}{\partial a_l} \right]]</td>
<td>may converge to local minimum: try different starting solutions</td>
</tr>
<tr>
<td>iterate computation of (\delta a_i) until minimum of (\chi^2) is reached. If (a_i) not correlated, then</td>
<td>when number of parameters big: matrix very large</td>
</tr>
<tr>
<td>[\delta \chi^2 = \delta \vec{a} \cdot \vec{\alpha} \cdot \delta \vec{a} = \alpha_{kk} \delta a_k^2]</td>
<td>First derivative</td>
</tr>
<tr>
<td></td>
<td>when not analytic</td>
</tr>
<tr>
<td></td>
<td>then compute numerically (with small step in (a_i))</td>
</tr>
</tbody>
</table>
Example: a Rosat image frame, with 0, 1, 2 counts per pixel. Clearly, Gaussian statistics don’t apply. What to do?
Poisson errors and maximum-likelihood

\(n_i \) photons when \(m_i \) expected

\[
P_i = \frac{m_i^{n_i} e^{-m_i}}{n_i!}
\]

Maximize overall probability \(L' \equiv \prod_i P_i \):

\[
\ln L' \equiv \sum_i \ln P_i = \sum_i n_i \ln m_i - \sum_i m_i - \sum_i \ln n_i!
\]

or equivalently minimize

\[
\ln L \equiv -2 \left(\sum_i n_i \ln m_i - \sum_i m_i \right)
\]

Comparing models

- models A and B
- number of fitted parameters \(n_A, n_B \)
- likelihoods \(\ln L_A, \ln L_B \)

\[
\Delta L \equiv \ln L_A - \ln L_B
\]

is \(\chi^2 \) distribution with \(n_A - n_B \) d.o.f. (for a sufficient number of photons)

- probability of best solution from simulations

Frank Verbunt (Astronomical Institute Utrecht)
General fitting methods: amoebe

When?
- when number of parameters of χ^2 too big
- when errors not Gaussian

General
- do not use derivative: easier to programme, esp. for complicated derivative
- no fast convergence
- errors must be computed explicitly by changing parameter of best solutions

Amoebe in 2-d
- find worst point and move it
- repeat (also with other points) until minimum reached
General fitting methods: genetic algorithm

\[\chi^2 \text{ or } L \text{ varies erratically} \]

\[f(x, y) = \left[16(x - 1) y (1 - y) \sin(n\pi x) \sin(n\pi y) \right]^2 \]

- varies smoothly for \(n = 1 \) (top)
- varies wildly for \(n = 9 \) (bottom)
- Levenberg-Marquardt fails miserably…
- surprisingly, amoeba works well

Charbonneau
General fitting methods: genetic algorithm

- two parameters: \(x, y\)
- paste digits together to make ‘animal’
- make generation of e.g. 100 animals
- compute goodness of fit \(\chi^2\) or \(L\) for each animal
- assign breeding probability according to goodness of fit
- breed with changeover and mutation
General fitting methods: genetic algorithm

Properties

- **fitness** (i.e. breeding probability) on ranking (e.g. rank n has probability $\propto 1/n$)
- **elitism**: keep best solution(s)
- mutation rate not too high, esp. in beginning
- final convergence slow
- fun variant: bad sheep
Some remarks on binning

One should not bin too much
Rue-of-thumb: 3 bins per FWHM resolution of instrument

$$\chi^2 = \sum_{i=1}^{N} \left(\frac{N_i - M_i}{\sigma_i} \right)^2$$

with $\sigma_i = \sqrt{N_i}$. Split each bin in p bins: $N'_i = N_i/p$, $M'_i = M_i/p$, $\sigma'_i = \sqrt{N_i/p} = \sigma_i/\sqrt{p}$ hence

$$\chi'^2 = \chi^2/p$$

with smaller χ^2 and larger N, the quality of fit Q will be bigger. \Rightarrow by oversampling an unacceptable fit may be made acceptable.

Gaussian

- the Fourier transform is also Gaussian
- small bins are high spatial frequencies
- but with small number of photons we have no info on high spatial variability
 \Rightarrow FT components at high frequencies are spurious (noise)
Conclusion

Statistics is not all that difficult
Combine some basic knowledge with common sense

More explanation and references in Lecture Notes:
www.astro.uu.nl/~verbunt/onderwijs/observe/lnotes.pdf