

Revealing the Properties of the Weak-lined T Tauri Binary HDE 245059 with Chandra and Keck

arXiv:0902.2537v1

Carla Baldovin Saavedra

ISDC/Observatoire de Genève - Switzerland

M. Audard (ISDC / Genève), G. Duchêne (LAOG / UC Berkeley), M. Güdel (ETH Zürich), S. Skinner (U. Colorado), F. Paerels (Columbia U), A. Ghez (UCLA), C. McCabe (IPAC)

March 19-20, 2009

SED classification of low mass your

CTTS strong H α emission W(H α) \geq 10 Å infrared excess

WTTS weaker $H\alpha$ emission no infrared excess

Fiegelson & Montmerle 1999

March 19-20, 2009

PROPERTIES	Infalling Protostar	Evolved Protostar	Classical T Tauri Star	Weak-lined T Tauri Star	Main Sequence Star
SKETCH			Nor Nor	X	• () •
Age (years)	10 ⁴	10 ⁵	10 ⁶ - 10 ⁷	10 ⁶ - 10 ⁷	> 10 ⁷
mm/INFRARED CLASS	Class 0	Class I	Class II	Class III	(Class III)
Disk	Yes	Thick	Thick	Thin or Non-existent	Possible Planetary System
X-RAY	?	Yes	Strong	Strong	Weak
THERMAL RADIO	Yes	Yes	Yes	No	No
Non-Thermal Radio	No	Yes	No ?	Yes	Yes

lars

HDE 245059

IRAS 60 µm Dolan & Mathieu 2001

Among the brightest pre-main sequence stars in X-rays, L_x~10³¹ ergs/s

Previous ROSAT observations have shown soft emission (despite its high luminosity)

There are still few high resolution spectra of WTTS in the X-rays

Did the history of the region affect the X-rays properties of the star?

 $M = 2 - 3 M_{sun} T_{eff} = 5410 \pm 110 K$ $d = 400 \pm 40 pc$

History of the SFR

Dolan & Mathieu 2002

~10 Myr. Chain of molecular gas extended accross the present SFR including 3 massive clouds.

~6 Myr. star formation started in the most massive clouds. Several OB stars. SFR increasing gradually.

~I Myr. SN disrupted the central region decreasing SFR and unbinding central stellar population.

Today. SF continues at the edges of the molecular ring but has ceased close to the SN epicenter.

X-ray Analysis

Spectral Fitting -The Models

We have used 3 models to fit the spectrum of the binary:

i) Discrete Emission Measure Distribution. Uses several isothermal plasma models

ii) Continuous EMD Chebyshev Polynomials $\varphi(T)=\alpha e^{\omega(T)}$, where $\omega(T)$ Ch. polyn n=8

> iii) Continuous EMD Power Law approximation $\varphi(T) = EM_0(T/T_0)^{\alpha}$ for $T \le T_0$ $EM_0(T/T_0)^{\beta}$ for $T > T_0$

March 19-20, 2009

Spectral Fitting - Results

3 models used are consistent $N_H \sim 8 \times 10^{19} \text{ cm}^{-2}$

Total emission measure ~ 7×10^{54} cm⁻³

Emission dominated by plasma at T~ 8 - 15 MK

soft component ~ 4 MK <u>hard c</u>omponent ~ 50 MK

He-like triplets from grating HEG+MEG

Binary Properties

Contours: 68, 96, and 99.7% confidence levels

Estimations based on 2MASS photometry, H and K flux ratios, fit to the optical and infrared SED

t = 2 - 3 Myr $T_{eff} N = 5880_{-370}^{+730} \text{ K}$ $T_{eff} S = 3540_{-660}^{+1420} \text{ K}$ $R_N = 4.9 \pm 0.3 \text{ R}_{sun}$ $R_S = 4.3_{-1.0}^{+1.4} \text{ R}_{sun}$ $M_N = 3 \text{ M}_{sun}$ $M_S = 2.5 \text{ M}_{sun}$

March 19-20, 2009

Summary

Chandra and Keck reveal a binary of young stars

X-ray properties are similar with T~8-15 MK (N brighter on average x2)

 $N_{\rm H}$ consistent with interstellar absorption, further indication of clearing of the inner region of λ Ori SFR

Densities from He-like give only high upper limits with no evidence of densities above $10^{12} \, \text{cm}^{-3}$

Properties of the binary show that N component has higher T_{eff} and mass, while both stars show similar radii

In conclusion, the coronal properties of HDE 245059 are similar to what is observed in other WTTS; the history of the region had little impact on them.