An introduction to SPEX

E. Costantini

J. Kaastra, J. de Plaa SRON

Introducing SPEX

- SPEX is a fitting package for X-ray spectral analysis
- Similar packages: XSPEC (Arnaud et al. 1996), ION (Netzer et al. 2002), PHASE (Krongold et al. 2003)
 ISIS (Houck & Denicola 2000)
- SPEX is optimized for high-resolution spectroscopy:
 - Most updated atomic data bases
 - Several multi-parameters absorption/emission models → accurate analysis of narrow features produced by different astrophysical processes

Where to get SPEX

www.sron.nl/spex

SPEX Manual

http://www.sron.nl/files/HEA/SPEX/manuals/manual.pdf

Quick-start documents

http://www.sron.nl/files/HEA/SPEX/manuals/spex intro.pdf

Downloading SPEX

- The latest version of SPEX is available for LINUX (and MAC-OS)
- Older version available for SOLARIS and Alpha-Dec

Easy installation: download a tar archive
Unpack the tar
Source the script
(bash- or c-shell)

→ The environment variables are set

TRAFO
SPEX
Are ready for use!

Step 1: using TRAFO

- TRAFO converts normal fits files into
 SPEX format → trimmed, slimmer fits files.
 - new spectrum & response matrix
- Inputs:
 - Original spectrum (either binned or unbinned)
 - Background
 - Effective area
 - Response matrix

Example: AGN Galactic abs*black body

Example 1: fitting a black body

```
File Edit View Terminal Go Help
Terminal
                                            Terminal
 lSPEX> data bb bb
 lSPEX> #----defining range
 lSPEX> ig 1e-4:7. u a
 lSPEX> iq 36.:1e4 u a
rlSPEX> #----set the plot device
rlspex>
rlsPEX>
rlSPEX> pl dev xs
rlSPEX> pl ty da
rlSPEX> pl ux a
rlSPEX> pl uy a
rlsPEX>
```

- Spectrum and response matrix are names bb.spo and bb.res
- Use the RGS band: 7:35 Angstrom
- Display the data in Angstrom

Save the plot:

SPEX> pl x lin

SPEX> pl y lin

SPEX> plot adump data_plot

→ data_plot.qdp ready for post processing with pgplot

Fitting the spectrum

```
File Edit View Terminal Go Help
Terminal

    ★ Terminal

rlSPEX> #------define the model
rlSPEX> dist 0.01 z
Distances assuming HO = 70.0 km/s/Mpc, Omega m = 0.300 Omega Lambda = 0.700 Om
eqa r = 0.000
Sector m A.U. ly pc kpc Mpc redshift
      age(vr)
 CZ
  1 1.332E+24 8.902E+12 1.408E+08 4.316E+07 4.316E+04 43.1582 0.0100
97.9 1.387E+08
rlspex>
rlSPEX> com red
You have defined
                   1 component.
rlspex> com abs
You have defined
                   2 components.
rlsPEX> com bb
You have defined
                   3 components.
rlSPEX> #------relate the component
rlspex>
rlSPEX> com rel 3 1,2
rlSPEX> #-----set known values
rlspex>
rlSPEX> par 1 z v 0.01
rlSPEX> par 2 nh v 1.6e-4
rlspex>
rlsPEX> cal
rlspex>
```


SI units 1erg=1e-7joule

SPEX> Fit meth cs

Other useful types of plotting

- pl ty chi → residuals in terms of χ
 pl uy rel → residuals relative to the model
- pl ty model \rightarrow plot of the current model (ph m⁻² s⁻¹ Ang⁻¹)

(data-model)/model

- pl ty data
 - pl uy fa \rightarrow cts s⁻¹ m⁻² Ang⁻¹
 - pl uy counts → number of counts in a particular emission feature
- ! A useful command file is in your exercise kit: plot_rgs.pro

A "live" example Fitting a star spectrum: AU Microscopii

- AU Mic is a cool nearby star (9pc), with a thermal spectrum.
- Plasma at different temperatures (coming from different loops of the stellar corona) produces a wealth of lines in the RGS band.
- → (Multiple) Collisionally ionized emission model, CIE (see also E. Behar talk)

The RGS spectrum of AU Mic

rlSPEX> com cie You have defined 1 component. rlSPEX> par sho

sect	comp	mod	acro	parameter with unit	value	status	minimum	maximum lsec
1		cie		ne nX V (1E64/m**3)	1.000000	thawn	0.	1.00E+20
1		cie	t	Temperature (keV)	1.000000	thawn	5.00E-04	1.00E+03
1		cie	sig	Sigma (log T)	0.00000	frozen	0.	1.00E+04
1		cie	ed	El dens (1E20/m**3)			1.00E-22	1.00E+10
1		cie	it	Ion temp (keV)	1.000000	frozen	1.00E-04	1.00E+07
1		cie	rt	T(balance) / T(spec)	1.000000	frozen	1.00E-04	1.00E+04
1		cie		Microturb vel (km/s)	0.00000	frozen	0.	3.00E+05
1		cie	ref	Reference atom	1.000000	frozen	1.0	30.
1		cie	01	Abundance H	1.000000	frozen	0.	1.00E+10
1		cie	02	Abundance He	1.000000	frozen	0.	1.00E+10
1		cie	03	Abundance Li	1.000000	frozen	0.	1.00E+10
1		cie	04	Abundance Be	1.000000	frozen	0.	1.00E+10
1		cie	05	Abundance B	1.000000	frozen	0.	1.00E+10
1		cie	06	Abundance C	1.000000	frozen	0.	1.00E+10
1		cie	07	Abundance N	1.000000	frozen	0.	1.00E+10
1		cie	08	Abundance O	1.000000	frozen	0.	1.00E+10
1		cie	09	Abundance F	1.000000	frozen	0.	1.00E+10
1		cie	10	Abundance Ne	1.000000	frozen	0.	1.00E+10
1		cie	11	Abundance Na	1.000000	frozen	0.	1.00E+10
1		cie	12	Abundance Mg	1.000000	frozen	0.	1.00E+10
1		cie	13	Abundance Al	1.000000	frozen	0.	1.00E+10
1		cie	14	Abundance Si	1.000000	frozen	0.	1.00E+10
1	1	cie	15	Abundance P	1.000000	frozen	0.	1.00E+10
1		cie	16	Abundance S	1.000000	frozen	0.	1.00E+10
1	1	cie	17	Abundance Cl	1.000000	frozen	0.	1.00E+10
1	1	cie	18	Abundance Ar	1.000000	frozen	0.	1.00E+10
1	1	cie	19	Abundance K	1.000000	frozen	0.	1.00E+10
1		cie	20	Abundance Ca	1.000000	frozen	0.	1.00E+10
1		cie	21	Abundance Sc	1.000000	frozen	0.	1.00E+10
1		cie	22	Abundance Ti	1.000000	frozen	0.	1.00E+10
1		cie	23	Abundance V	1.000000	frozen	0.	1.00E+10
1	1	cie	24	Abundance Cr	1.000000	frozen	0.	1.00E+10
1	1	cie	25	Abundance Mn	1.000000	frozen	0.	1.00E+10
1	1	cie	26	Abundance Fe	1.000000	frozen	0.	1.00E+10
1	1	cie	27	Abundance Co	1.000000	frozen	0.	1.00E+10
1	1	cie	28	Abundance Ni	1.000000	frozen	0.	1.00E+10
1	1	cie	29	Abundance Cu	1.000000	frozen	0.	1.00E+10
1	1	cie	30	Abundance Zn	1.000000	frozen	0.	1.00E+10
1		cie	file	File electr.distrib.				

Emission measure

rlspex> com cie								
You have defined 1 component.								
		ar sh						
sect	comp	mod	acro	parameter with unit	value	status	minimum	maximum lse
				p				
1	1	cie	norm	ne nX V (1E64/m**3)	1.000000	thawn	0.	1.00E+20
1		cie	t	Temperature (keV)	1.000000	thawn	5.00E-04	1.00E+03
1	100 100 100 100 100 100 100 1	cie	sig	Sigma (log T)	0.00000	frozen	0.	1.00E+04
1		cie	eď	El dens (1E20/m**3)			1.00E-22	1.00E+10
1	1	cie	it	Ion temp (keV)	1.000000	frozen	1.00E-04	1.00E+07
1	1	cie	rt	T(balance) / T(spec)	1.000000	frozen	1.00E-04	1.00E+04
1	1	cie	vmic	Microturb vel (km/s)	0.00000	frozen	0.	3.00E+05
1	1	cie	ref	Reference atom	1.000000	frozen	1.0	30.
1	1	cie	01	Abundance H	1.000000	frozen	0.	1.00E+10
1		cie	02	Abundance He	1.000000	frozen	0.	1.00E+10
1	1	cie	03	Abundance Li	1.000000	frozen	0.	1.00E+10
1		cie	04	Abundance Be	1.000000	frozen	0.	1.00E+10
1		cie	05	Abundance B	1.000000	frozen	0.	1.00E+10
_1	1	cie	06	Abundance C	1.000000	frozen	0.	1.00E+10
1		cie	07	Abundance N	1.000000	frozen	0.	1.00E+10
1	1	cie	08	Abundance O	1.000000	frozen	0.	1.00E+10
1	1	cie	09	Abundance F	1.000000	frozen	0.	1.00E+10
1	1	cie	10	Abundance Ne	1.000000	frozen	0.	1.00E+10
1	1	cie	11	Abundance Na	1.000000	frozen	0.	1.00E+10
1	1	cie	12	Abundance Mg	1.000000	frozen	0.	1.00E+10
1	1	cie	13	Abundance Al	1.000000	frozen	0.	1.00E+10
1	1	cie	14	Abundance Si	1.000000	frozen	0.	1.00E+10
1	1	cie	15	Abundance P	1.000000	frozen	0.	1.00E+10
1	1	cie	16	Abundance S	1.000000	frozen	0.	1.00E+10
1	1	cie	17	Abundance Cl	1.000000	frozen	0.	1.00E+10
1	1	cie	18	Abundance Ar	1.000000	frozen	0.	1.00E+10
1		cie	19	Abundance K	1.000000	frozen	0.	1.00E+10
1		cie	20	Abundance Ca	1.000000	frozen	0.	1.00E+10
1	1	cie	21	Abundance Sc	1.000000	frozen	0.	1.00E+10
1	1	cie	22	Abundance Ti	1.000000	frozen	0.	1.00E+10
1	1	cie	23	Abundance V	1.000000	frozen	0.	1.00E+10
1		cie	24	Abundance Cr	1.000000	frozen	0.	1.00E+10
1		cie	25	Abundance Mn	1.000000	frozen	0.	1.00E+10
1		cie	26	Abundance Fe	1.000000	frozen	0.	1.00E+10
1		cie	27	Abundance Co	1.000000	frozen	0.	1.00E+10
1		cie	28	Abundance Ni	1.000000	frozen	0.	1.00E+10
1		cie	29	Abundance Cu	1.000000	frozen	0.	1.00E+10
1		cie	30	Abundance Zn	1.000000	frozen	0.	1.00E+10
1	1	cie	file	File electr.distrib.				

Temperatures:

- -- Electron T_e
- -- Ionic T_i → line thermal broadening (dependence on the thermal velocity of the ions and also on ion mass)
- -- equilibrium T_b \rightarrow In CIE $T_b/T_e=1$

Note: for non-equilibrium use the NEI model.

rlSPEX> com cie You have defined 1 component. lSPEX> par sho maximum lsec acro parameter with unit value status 1 cie norm ne nX V (1E64/m**3) 1.000000 thawn ο. 1.00E+20 Temperature (keV) 1.000000 thawn 5 00F-04 1 00F+03 frozer 1 cie ed El dens (1E20/m**3) 9.9999998E-15 frozen 1.00E-22 1.00E+10 Ion temp 1.00E-04 1.00E+07 1.000000 frozen 1.000000 frozen 1.00E-04 1.00E+04 frozen Reference atom 1.000000 frozen 1.0 30. 1 cie 01 Abundance H 1.000000 frozen ο. 1.00E+10 Abundance He 1 cie 1.000000 frozen 0. 1.00E+10 1 cie 03 Abundance Li 1.000000 frozen ο. 1.00E+10 Abundance Be 04 1.000000 frozen ο. 1.00E+10 1 cie 05 Abundance B 1.000000 frozen 1.00E+10 Abundance C 1.000000 frozen 1.00E+10 1 cie Abundance N 1.000000 frozen ο. 1.00E+10 1 cie 08 Abundance 0 1.000000 frozen ο. 1.00E+10 1 cie 09 Abundance F 1.000000 frozen ο. 1.00E+10 Abundance Ne 1.00E+10 10 1.000000 frozen 11 Abundance Na 1.000000 frozen Ο. 1.00E+10 1 cie Abundance Mg 1.000000 frozen 0. 1.00E+10 Abundance Al 1 cie 13 1.000000 frozen 0. 1.00E+10 14 Abundance Si 1.000000 frozen 0. 1.00E+10 1 cie 15 Abundance P 1.000000 frozen ο. 1.00E+10 1 cie 16 Abundance S 1.000000 frozen ο. 1.00E+10 17 Abundance Cl 1.000000 frozen ο. 1.00E+10 18 Abundance Ar 1.000000 1 cie frozen Ο. 1.00E+10 1 cie 19 Abundance K 1.000000 frozen 0. 1.00E+10 20 Abundance Ca 1.000000 frozen ο. 1.00E+10 1 cie 21 Abundance Sc 1.000000 frozen ο. 1.00E+10 22 1 cie Abundance Ti 1.000000 frozen Ο. 1.00E+10 1 cie 23 Abundance V 1.000000 ο. 1.00E+10 frozen 24 Abundance Cr 1.000000 frozen ο. 1.00E+10 1 cie 25 Abundance Mn 1.000000 frozen 0. 1.00E+10 1 cie 26 Abundance Fe 1.000000 frozen ο. 1.00E+10 27 1 cie Abundance Co 1.000000 frozen Ο. 1.00E+10 1 cie 28 Abundance Ni 1.000000 frozen 0. 1.00E+10 29 1 cie Abundance Cu 1.000000 frozen ο. 1.00E+10 30 Abundance Zn 1.000000 frozen Ο. 1.00E+10 file File electr.distrib.

Width of the temperature (Gaussian) distribution $\sigma_T = 0 \rightarrow plasma$ is isothermal

Line broadening due to microturbulence:

 $V_{\rm mic}$ = $\sqrt{2} \, \sigma_{\rm v}$ where $\sigma_{\rm v}$ is the Velocity dispersion along the line of sight

rlSPEX> com cie You have defined 1 component. lSPEX> par sho acro parameter with unit value maximum lsec sect comp mod status 1 cie norm ne nX V (1E64/m**3) 1.000000 thawn ο. 1.00E+20 Temperature (keV) 1.000000 thawn 5.00E-04 1.00E+03 1 cie sig Sigma (log T) 0.00000 frozen 0. 1.00E+04 Ion temp 1.000000 frozen 1.00E-04 1.00E+07 T(balance) / T(spec) 1.000000 frozen 1.00E-04 1.00E+04 vmic Microturb vel (km/s) 0.00000 3.00E+05 frozen ο. Reference atom 1.000000 frozen 1.0 ref 30. 01 Abundance H 1.000000 frozen ο. 1.00E+10 1 cie 02 Abundance He 1.000000 frozen 0. 1.00E+10 1 cie 03 Abundance Li 1.000000 frozen Ο. 1.00E+10 1 cie 04 Abundance Be 1.000000 frozen 0. 1.00E+10 1 cie 05 Abundance B 1.000000 frozen 0. 1.00E+10 06 Abundance C 1.000000 frozen 1.00E+10 1 cie 07 Abundance N 1.000000 frozen ο. 1.00E+10 1 cie 08 Abundance 0 1.000000 frozen ο. 1.00E+10 1 cie 09 Abundance F 1.000000 frozen Ο. 1.00E+10 10 Abundance Ne 1.000000 ο. 1.00E+10 1 cie frozen 11 Abundance Na 1.000000 frozen ο. 1.00E+10 1 cie 12 Abundance Mg 1.000000 frozen 0. 1.00E+10 Abundance Al 1 cie 13 1.000000 frozen 0. 1.00E+10 14 Abundance Si 1 cie 1.000000 frozen 0. 1.00E+10 1 cie 15 Abundance P 1.000000 frozen ο. 1.00E+10 Abundance S 1 cie 16 1.000000 frozen 0. 1.00E+10 17 Abundance Cl 1.000000 1.00E+10 1 cie frozen ο. 1 cie 18 Abundance Ar 1.000000 frozen 1.00E+10 Ο. 1 cie 19 Abundance K 1.000000 frozen 0. 1.00E+10 Abundance Ca 1 cie 20 1.000000 frozen ο. 1.00E+10 1 cie 21 Abundance Sc 1.000000 frozen ο. 1.00E+10 22 Abundance Ti 1 cie 1.000000 frozen Ο. 1.00E+10 1 cie 23 Abundance V 1.000000 frozen ο. 1.00E+10 1 cie 24 Abundance Cr 1.000000 frozen Ο. 1.00E+10 1 cie 25 Abundance Mn 1.000000 frozen ο. 1.00E+10 Abundance Fe 1 cie 26 1.000000 frozen ο. 1.00E+10 27 Abundance Co 1 cie 1.000000 frozen Ο. 1.00E+10 1 cie 28 Abundance Ni 1.000000 frozen 0. 1.00E+10 29 1 cie Abundance Cu 1.000000 frozen ο. 1.00E+10 30 Abundance Zn 1.000000 1.00E+10 1 cie frozen Ο. file File electr.distrib.

1 cie

Electron density

Lines which are sensitive to density will be adjusted in normalization

You	EX> co have EX> pa	defi	ned	1 component.				
sect	comp	mod	acro	parameter with unit	value	status	minimum	maximum lse
1		cie	norm	ne nX V (1E64/m**3)	1.000000	thawn	0.	1.00E+20
1		cie	t	Temperature (keV)	1.000000	thawn	5.00E-04	1.00E+03
1		cie	sig	Sigma (log T)	0.00000	frozen	0.	1.00E+04
1	1	cie	ed	El dens (1E20/m**3)	9.9999998E-15	frozen	1.00E-22	1.00E+10
1	1	cie	it	Ion temp (keV)	1.000000	frozen	1.00E-04	1.00E+07
1	1	cie	rt	T(balance) / T(spec)	1.000000	frozen	1.00E-04	1.00E+04
1	1	cie	vmic	Microturb vel (km/s)	0.00000	frozen	0.	3.00E+05
1	1	cie	ref	Reference atom	1.000000	frozen	1.0	30.
	1	cie	01	Abundance H	1.000000	frozen	Θ.	1.00E+10
1	1	cie	02	Abundance He	1.000000	frozen	0.	1.00E+10
1	1	cie	03	Abundance Li	1.000000	frozen	0.	1.00E+10
1	1	cie	04	Abundance Be	1.000000	frozen	0. 0.	1.00E+10
1	1	cie	05	Abundance B	1.000000	frozen	0.	1.00E+10
-1	1	cle	06	Abundance C	1.000000	frozen	· · · · o. · · · · · ·	1.00E+10
1	1	cie	07	Abundance N	1.000000	frozen		1.00E+10
1	1	cie	08	Abundance 0	1.000000	frozen	0.	1.00E+10
1	· · · · · · · · · · · · · · · · · · ·	cie	09	Abundance F	1.000000	frozen	0. 0. 0.	1.00E+10
1	Ī	cie	10	Abundance Ne	1.000000	frozen	ō.	1.00E+10
1	Ī	cie	īī	Abundance Na	1.000000	frozen		1.00E+10
î		cie	12	Abundance Mg	1.000000	frozen	o. o.	1.00E+10
ī	ī	cie	13	Abundance Al	1.000000	frozen	0.	1.00E+10
Ť		cie	14	Abundance Si	1.000000	frozen	0.	1.00E+10
1		cie	15	Abundance P	1.000000	frozen	ő.	1.00E+10
Ť		cie	16	Abundance S	1.000000	frozen	0.	1.00E+10
1	-	cie	17	Abundance Cl	1.000000	frozen	o.	1.00E+10
1		cie	18	Abundance Ar	1.000000	frozen	0. 0.	1.00E+10
Ť		cie		Abundance K	1.000000		0.	1.00E+10
-		cie	19 20	Abundance Ca	1.000000	frozen frozen	0. 0.	1.00E+10
1	- 1	cie	21	Abundance Sc	1.000000	frozen	0.	1.00E+10
1	- 1	cie		Abundance Ti	1.000000	frozen	0.	1.00E+10
-	-	cie	22 23	Abundance V	1.000000	frozen	0.	1.00E+10
+	-		23				0.	
	-	cie	24 25	Abundance Cr	1.000000	frozen		1.00E+10
	1	cie	20	Abundance Mn	1.000000	frozen	0.	1.00E+10
1	-	cie	∠b 	Abundance Fe	1.000000	frozen	0.	1.00E+10
1		cie	26 27 28	Abundance Co	1.000000	frozen	0.	1.00E+10
ı.	1	cie	26	Abundance Ni	1.000000	frozen	0.	1.00E+10
1	1	cie	29	Abundance Cu	1.000000	frozen	0.	1.00E+10
1	1	cie	30	Abundance Zn	1.000000	frozen	0.	1.00E+10
1	11	cie	file	File electr.distrib.				

Abundances

Deafult is set to solar (Anders & Grevesse 89)

Change abundances: SPEX> abu #a

Reference atom is H, but for spectra with strong lines (and weak continuum) it's better to set the ref to the strongest line (Fe)