The High Resolution X-ray Spectrometer, SXS, on the Astro-H mission

K. Mitsuda

Institute of Space and Astronautical Science (ISAS)

Japan Aerospace Exploration Agency (JAXA)

New exploration X-ray Telescope

Japanese

Hard X-ray imaging Spectroscopy (2-80 keV) Soft X-ray high-resolution Spectroscopy (FWHM \leq 7eV)

Evolution of super massive black holes Evolution of clusters of galaxies Accelerations in clusters and SNRs Vicinity of black holes

Present status: phase B. Present expected launch date: JFY 2013.

Astro-H Science Payloads

Soft X-ray Spectrometer, SXS

SXS XRT (SXT-S)

 High resolution X-ray spectrometer using a microcalorimeter array
 High Energy resolution (FWHM<7eV) and modest imaging (6x6 or 8x8) capabilities

Microcalorimeters High quantum efficiency Imaging capability

Thin foil mirror 45cm diameter, 5.6m focal length, I' resolution

> SXS-XSC Dewar Soft X-ray Spectrometer X-ray Calorimeter System

8x8 μ-calorimeter array7 eV resolution4'x4' FOV

Astro-H SXS collaboration

X-ray Calorimeter System (SXS-XCS)

ISAS/JAXA ARD/JAXA Tokyo Metropolitan University Kanazawa University Riken Rikkyo University Saitama University National Inst. Material Science Tsukuba University Telescope (SXS-XRT) ISAS/JAXA Nagoya University Tokyo Metropolitan University Ehime University

÷

NASA/GSFC University of Wisconsin Yale University NASA/AMES NASA/GSFC

SRON University of Geneva

Participation to be decided.

SXS requirements and goal

	Baseline	Goal	XRS			
Pixel size	8I4µm⊡		624µm			
Array format	6 x 6 (32 pixel readout)	8 x 8 (64 pixel readout)	6 x 6 (32 pixel readout)			
(FOV)	3.0' × 3.0'	4.1' x 4.1'	2.9' x 2.9'			
Effective area@lkeV	190 cm ²		136 cm ²			
Effective area@7keV	225 cm ²		132 cm ²			
Energy Resolution	7 eV	4 eV	(I2 eV) 7 eV			
Lifetime	3 years	> 5 years	(>2 years)			
whole the SXS system is designed to handle 8x8 array						
High resolution X-ray spectroscopy: towards IXO, MSSL, March 18-19, 2009						

Effective area

Energy resolution improvement

Energy resolution

SXS system

Cooling Requirements

	Requirement	Goal
Temperature @detector interface	47 mK	47 mK
Stability	IμK rms in 20s -10mim	0.5 µK rms
Lifetime	3 years	5 years
	0.4µW @47mK	0.6µW @47mK
Heat load from detector (FEA)	0.3mW @1.3K (He)*	
	15mW @32K (IVCS)	
A = detector Front-End Asse	mbly * Depend	lent on IVCS tempera

Cooling system: Cooling chain

Cooling system: LHe expected life

	Case	Cooler Power (W)	Heat load to He tank (mW)	Lifetime of LHe (years)				
l	Normal	Shield cooler 50x2 Precooler 50x2 JT 90	0.53 (0.3 from FEA)	5.7+				
2	Failure of one shield cooler	Shield cooler 90x1 Precooler 50x2 JT 90	0.83 (0.6 from FEA)	3.6+				
3	Failure of JT compressor	Shield cooler 90x2 Precooler 50x2 JT 0	0.96 (0.1 from FEA)	3.1				
4	Failure of one JT precooler	Shield cooler 90x2 Precooler 90x1 JT 0	0.99 (0.1 from FEA)	3.0				
	+ Observation continues as far as ³ He JT cooler works							

Science with the SXS

Ask people in this room

Main scientific objectives of the SXS

- Energy budget of clusters of galaxies and SNRs
 Thermal energy, bulk motion/turbulence energy, [and non-thermal energy by HXI]
- Gravitational potential and spin of black holes
 Broad/narrow emission/absorption lines
- Chemical enrichment of ICM and IGM; when, where, how elements are created and dispersed?
 - N-Ni abundances of galaxies and clusters, resolving K and L lines
- □ Constraints on cosmological parameters from clusters
 □ Precise determination of mass of ≥30 nearby clusters, by measuring temperature, pressure, and bulk motion/turbulence.

A simulated Asto-H observation

Summary

- Astro-H is presently in phase-B, and expected to be launched in JFY 2013 (2012 summer or 2013 winter).
- The Soft X-ray Spectrometer (SXS) consists of a focusing X-ray telescope and a microcalorimeter-array, and is developed by Japan-US collaboration with European participation.
 - **Effective area = 225cm² @ 7 keV**
 - **Energy resolution (FWHM)** \leq 7 eV
 - **Field of view = 4.'l x 4.'l with 8x8 pixels**
 - \Box Operation life \geq 3 years
- Main scientific objectives of the SXS
 - Energy budget of clusters and SNRs
 - Gravitational potential and spin of black holes
 - Chemical enrichment of ICM and IGM
 - **Cosmological parameters from cluster mass**