Photoionised gas in Seyfert I Galaxies revealed through emission lines in high resolution spectra

Anna Lia Longinotti (MIT), <u>Achille Nucita</u>, Maria Santos-Lleo, Matteo Guainazzi (ESAC)

Unification models

Seyfert 2

Well established evidence for Compton thick torus on parsec-scale:

IR interferometry in Sy 2 NGC 1068 (Jaffe et al. 04)

Several X-ray measurements of ubiquitous narrow Fe Kα line from Compton Reflection in type I AGN (Bianchi +07)

Obscured AGN at high resolution: average spectrum of a Seyfert 2

2 Ms RGS exposure of 33 Seyfert 2s

- CIELO catalogue of 69 obscured AGN (Guainazzi & Bianchi 07)
- Soft X-ray spectra dominated by transitions of H- and Helike O, Ne,C and high detection rate of narrow RRC of T~ few eV, photoionisation by the AGN continuum.
- Large EW due to no continuum
- Best studied case NGC1068, (Kinkhabwala+ 02) see Dan Evans's talk

Spatial coincidence of HST O[III] and Chandra soft X-ray images of Seyfert 2s shows that soft-X-ray emission is mostly consistent with photoionisation in the extended NLR (Bianchi et al. 06)

Unobscured AGN at high resolution: average Seyfert 1 ?

- Direct view of the nuclear continuum
- In ~50% of sources, warm absorbers of numerous N_H, ξ
- Different flux levels (Sy2 are always soft X-ray obscured)

XMM-Newton pn data-to-model ratios of Seyfert I: variety of soft X-ray shapes

Emission lines in Seyfert 1: the case for Mrk 335

Date	Exp	Γ _{soft}	Flux _{soft}	Γ _{hard}	Flux _{hard}
-	(ks)	-	(10 ⁻¹² cgs)	-	(10 ⁻¹² cgs)
2007	22	2.84±0.03	1.9±0.1	1.02±0.07	3.3±0.8
2006	30	2.72±0.01	32±0.1	2.09±0.01	18±0.2

XMM high state: usual Sey I continuum with complex Iron K line (O'Neill et al. 2007)

Swift, XMM low state: flux drop, flattening of hard X-ray spectrum possibly due to gas partially covering the AGN (Grupe et al. 2007, 2008)

XMM-pn

Mrk 335 RGS spectra

Data-to model (power law) ratios

2006 high state: no warm absorber

Mrk 335 RGS spectra

Data-to model (power law) ratios

2006 high state: no warm absorber

Analogy with Sy2 ?

Soft X-ray lines in Mrk 335 may be signature of photoionisation in the NLR as for Sy2: the nuclear continuum drops, the NLR becomes visible in the X-rays, agreement with Unification scheme...

Soft X-ray emission lines

Soft X-ray emission lines

Line ratio diagnostic and CLOUDY

Line ratios in He-like O triplet and line fluxes for all detections

CLOUDY simulations

+

Parameters range:

Electron density = 10^9 - 10^{11} cm⁻³ **Column Density**= 10²⁰-10²² cm⁻² $\log U$ (ionisation par)= 0.4-0.8

Gas distance within

2*10¹⁶⁻¹⁷ cm

Line ratio diagnostic and CLOUDY

Line ratios in He-like O triplet and line fluxes for all detections

CLOUDY simulations

+

Parameters range:

Electron density = 10^9 - 10^{11} cm⁻³ Column Density= 10²⁰-10²² cm⁻² $\log U$ (ionisation par)= 0.4-0.8

Gas distance within

2*10¹⁶⁻¹⁷ cm

From FWHM Hβ line and BH mass

location consistent with BLR clouds

Longinotti+ 2008 A&A 484 311L

X-ray emission lines in the BLR: other sources

- NGC 7213 see next talk by S. Bianchi
- Mkn 279 Costantini et al. 2007
- Akn 564 Smith et al. 2008 and many more sources
 - Mkn 841, two-phase warm absorber and emission lines Longinotti in prep.
 - NGC 4051 Nucita et al. in prep.

NGC 4051 low state spectrum

A. Nucita, Y. Maruccia, M. Guainazzi, A.L. Longinotti et al.

- High state: well established two-phase warm absorber (Krongold et al. 07, Steenbrugge et al. 09)
- Low state: prominent emission lines (Pounds et. al 04)

Table 1: NGC 4051 properties of the observed emission lines.

Line ID	$\lambda_{exp}(\text{\AA})$	$\lambda_{obs}(\mathrm{\AA})$	$v (kms^{-1})$	Flux (× 10^{-14} cgs)	ΔC
NeX_La	12.132	$12.207^{+0.106}_{-0.054}$	1850^{+2630}_{-1340}	$1.35^{+0.94}_{-0.86}$	2.6
NVI_r	28.787			$\lesssim 0.91$	0.9
NVIi	29.082	$29.074_{-0.015}^{+0.022}$	-80^{+220}_{-150}	$1.33^{+0.53}_{-0.59}$	6.3
NVIf	29.534	$29.524_{-0.015}^{+0.022}$	-110^{+225}_{-150}	$3.55_{-0.79}^{+0.66}$	38.3
$OVIII_Lb$	16.006	$15.902^{+0.036}_{-0.041}$	-1950^{+670}_{-760}	$1.43_{-0.71}^{+0.79}$	11.3
$FeXVII_3s2p$	17.097	$17.065_{-0.021}^{+0.040}$	-556^{+710}_{-380}	$3.26^{+1.43}_{-1.53}$	20.7
OVII _H b	18.627	$18.535_{-0.091}^{+0.063}$	-1480^{+1020}_{-1470}	$1.12^{+0.65}_{-0.65}$	3.4
$OVIII_La$	18.967	$18.978_{-0.020}^{+0.012}$	180^{+190}_{-310}	$7.01^{+1.19}_{-1.12}$	135.2
$NVII_Lg$	19.826				
NVIILb	20.910	$20.985^{+0.039}_{-0.023}$	1080^{+550}_{-320}	$2.14^{+1.33}_{-1.17}$	9.6
$OVII_r$	21.602	$21.585^{+0.011}_{-0.015}$	-230^{+150}_{-210}	$0.47^{+0.33}_{-0.38}$	0.5
$OVII_i$	21.804	$21.804_{-0.173}^{+0.250}$	-4^{+3430}_{-2380}	$7.16^{+1.75}_{-1.58}$	74.0
OVII _f	22.101	$22.103_{-0.019}^{+0.029}$	30^{+395}_{-255}	$15.04^{+2.13}_{-1.96}$	237.9
$NVII_La$	24.779	$24.797_{-0.018}^{+0.027}$	220_{-220}^{+330}	$2.02^{+0.91}_{-0.84}$	16.9
CVI_Ld	26.357				
CVI_Lg	26.990	$26.957^{+0.067}_{-0.067}$	-370^{+740}_{-740}	$0.89^{+0.67}_{-0.85}$	2.6
CVI_Lb	28.465	$28.324_{-0.044}^{+0.070}$	-1490_{-470}^{+734}	$1.22^{+0.96}_{-0.84}$	5.6
$NeIX_r$	13.447			$\lesssim 0.76$	0.0
$NeIX_i$	13.550			≤ 0.80	0.1
$NeIX_f$	13.699	$13.698\substack{+0.019\\-0.016}$	-24^{+415}_{-360}	$4.68^{+1.32}_{-1.18}$	49.8
CVI_La	33.734	$33.762\substack{+0.027\\-0.016}$	250^{+240}_{-140}	$3.46^{+1.27}_{-1.14}$	28.8
$CV_H b$	34.973	$35.261^{+0.086}_{-0.067}$	2475^{+738}_{-570}	$1.03^{+1.05}_{-0.02}$	3.5

Preliminary results on gas conditions:

From RRC diagnostic T≈3*10⁴ K

Distance ~0.5pc Size ~0.08 pc

Cloudy grids of models produced from the XMM observed UV/X-ray SED and fitted on the data; more definitive results expected after inclusion of warm absorber in the model

Conclusions

- Photoionised gas in AGN may lie also within the optical Broad Line Region
- Geometry, relation to BLR clouds and other physical properties need to be explored, e.g. connection of X-ray clouds with warm absorbers (see NGC4051) and with accretion disc
- More and more and more high resolution data need to be analysed: so far only Mrk 335