Cool gas in the core of the Centaurus cluster (plus some others)

Jeremy Sanders Institute of Astronomy University of Cambridge

Sanders et al, 2008, MNRAS, 385, 1186 Sanders, Fabian and Taylor, 2009, MNRAS, 393, 71 Sanders et al, in prep

A.C. Fabian, J. Peterson, S.W. Allen, R.G. Morris, J. Graham, R.M. Johnstone, G.B. Taylor

Chandra (X-ray)

DSS (Optical)

Abell 2199 (Johnstone et al 2002) z = 0.0309

Cooling times and temperatures

Mean radiative cooling time profiles Temperature profiles 0.01 0.03 0.1 0.3 100 Cool Core 4 Non-Cool Core 2 13.7 Gyr 10 Scaled Deprojected Temperature Cooling time (10⁹ yr) 0.7 0.5 slope = 0.40.1 Voigt et al 2003 Sanderson et al 2006 Э 10 100 1 0.03 0.01 0.1 0.3 Radius (kpc) Radius (R₅₀₀)

- Mean radiative cooling times in centre of many cluster cores $< 10^9$ years
- Cluster centres typically cooler than 1/2 to 1/3 of the outer temperature

Cooling in cluster cores

- Suppose there is a luminosity L emitted from within a cooling region r_{cool}
- To offset radiation lost through cooling, if the cluster is in steady state and there is no heating, there should be a deposition rate of

$$\dot{M} \approx \frac{2}{5} \frac{L \,\mu \,m}{kT}$$

luminosity of region is:

- radiation of thermal energy
- PdV work done on gas entering r_{cool}
- Measured values from SB profiles gave values of 10-1000s solar masses per year – a "cooling flow"

Lack of cool X-ray emitting gas

see also Peterson et al 01, 03, Kaastra et al 01, 03, Tamura et al 01,...

AGN heating

Perseus Centaurus Perseus

Hydra A

A2597

Centaurus temperature map

Centaurus cross dispersion image

Sanders et al 2008

Ionisation equilibrium

Data from Mazzotta et al 1998

Line ratios — constraints on kT

Ratio of flux of emission lines and compared to CHIANTI model

Implies average temperature of gas 3.5 to 5.2×10^{6} K

Spectral fitting limits on gas kT

Abell 2204

z=0.15

Abell 2204: RGS spectrum

We detect a FeXVII line (at > 3σ , and weakly a second line)

This implies gas around 0.7 keV (\sim 8 MK), consistent with 120 M_{sun}yr⁻¹

This gas is in a cluster which has upper temperatures of 10 or 12 keV

Large range in temperature in this cluster (~15)

114 ks of *XMM-Newton* RGS data (Sanders, Fabian & Taylor 2009)

Current RGS sample

HCG 62

HCG 62 is a compact group of galaxies

Four bright member galaxies

Temperature varies in spatially resolved studies from 1.5 to 0.7 keV (Morita et al 2006)

High abundance arc (Gu et al 2007)

Temperature distributions

Conclusions

- The behaviour of cool cores observed by RGS is quite varied
 - Wide range in temperature, >10, in Centaurus, A2204, PKS1404, A262 (also Perseus and 2A0335+096, not shown)
 - Narrow range in HCG 62
- Implies there is always close feedback
- It is important to study a wide range of clusters/groups with deep observations with XMM
- New high resolution X-ray telescopes, e.g. Astro-H, IXO very important!