Impact of sub-keV Soft Excess on Warm Absorbers Susmita Chakravorty

IUCAA

Ajit Kembhavi Martin Elvis Gary Ferland N. R. Badnell

High Resolution Spectroscopy Workshop MSSL, UCL 19th March 2009

Warm Absorber

> Absorption Edges in Soft X-ray Spectra

 · CV
 CVI
 OVII
 OVIII
 FeXVII
 NeX

 392
 490
 740
 870
 1260
 1360 (eV)

· C (V & VI) O (V - VIII) Fe (XVII - XXII)

• Ne (IX & X) Mg (XI & XII) Si (XIII - XVI)

> Properties

- Partially ionized gas in our line of sight to AGN
- \cdot Distance from the source ~ 0.01 1 pc
- \cdot Column Density (N_H) ~ $10^{22\pm1}~\text{cm}^{-2}$
- \cdot Density (n_H) ~ 10⁹ cm⁻³
- \cdot Ionization Parameter ξ ~ 10 100 erg cm s^-1
- \cdot Temperature ~ 10⁵ K 10⁷ K

> Current Issues

• Absorption features are blue shifted relative to optical emission lines, indicating outflow

 \cdot Mass loss rate is a substantial fraction of the accretion rate, or exceeds it.

• The X-ray warm absorber could coexist with a UV absorber, but it is still difficult to connect them.

Is the Warm Absorber in thermodynamic equilibrium?
If so, does the gas have multiphase nature?

CLOUDY

"Photoionisation Simulation for the discriminating astrophysicist since 1978" http://www.nublado/org/

Inputs

Radiation Field

Geometry

Neutral Composition

Density

Thickness

Process

 $\frac{\text{Basic Assumption}}{\text{Atomic processes reached}}$ $\frac{\text{Atomic processes reached}}{\text{time-steady state}}$ $n(X^{+i})\Gamma(X^{+i}) = n(X^{+i+1})n_e\alpha_G(X^{+i+1}, T)$

 $\frac{\text{Thermal balance achieved}}{\Lambda_{\text{Coll}} + \Lambda_{\text{IC}}} = (\Gamma_{\text{Ph}} + \Gamma_{\text{C}}) / n$

 $\frac{\partial n_i}{\partial t} = \sum_{j \neq i} n_j R_{ji} + \text{Source} - n_i \left(\sum_{j \neq i} R_{ij} + \text{Sink} \right) = 0$

CLOUDY

"Photoionisation Simulation for the discriminating astrophysicist since 1978"

http://www.nublado/org/

 $Output \rightarrow$ Thermal state & Ionic composition of cloud

Stability Curve

Each point in the curve have thermal and ionic composition information

Literature Survey

Krolik etal. (1981) : Obtained the stability curve for cold gas and hot gas in AGN.

Reynolds and Fabian (1995) : Warm absorber stability conditions as a function of ionizing continuum and gas density.

Hess et al. (1997) : Causes of instability in Warm gas as a function of ionizing continuum and abundance for low-mass X-ray binaries and Seyfert galaxies

Komossa & Meerschweinchen (2000) and Komossa & Mathur (2001) : Stability curve for Warm absorber as a function of ionizing continuum and chemical composition of the absorber Netzer 1994, 1996

Krolik & Kriss, 2001

Chelouche & Netzer, 2005

Systematic analysis of S-curves Susmita Chakravorty et. al. 2009 MNRAS, 393, 83 The ionizing continuum · No stable states if $\alpha < 0.2$

- Multiphase WA if $\alpha \sim 0.8$
- For α > 1.1, no unstable
 states

$$f_v \sim [v^{-\alpha} + \eta v^{-\alpha_s}] e^{-v/v_{max}}$$

Systematic analysis of S-curves Abundance · No stable states if a < 0.2

- Multiphase WA if $\alpha \sim 0.8$
- \bullet For α > 1.1, no unstable states
- Z₀ : Classical S-curve
- Z > Z_{sol} enhances multiphase extended stable state at 10⁶ K
- \cdot Z < Z_{sol} reduces multiphase

Komossa & Mathur (2001)

Systematic analysis of S-curves Abundance · No stable states if a < 0.2

- Multiphase WA if $\alpha \sim 0.8$
- \bullet For α > 1.1, no unstable states
- Z₀ : Classical S-curve
- \cdot Z > Z_{sol} enhances multiphase
- \cdot Z \cdot Z_{sol} reduces multiphase
- X-ray Group : Most effective group (C, O, Fe, Ne)
- Oxygen : Most effective element
 at 10⁵ K. Needed for WA.
- Iron : Most effective element
 needed at 10⁶ K. Iron was
 formed when T_{UNIV} = 1 Gyrs.
 WA before that different.

 $\boldsymbol{\cdot}$ a-elements only gas : WA unlikely

Systematic analysis of S-curves

High density gas exposed to steep a_{OX} continuum shows effect

Hydrogen free free absorption becomes a dominant heating agent

Can this become a tool for direct determination of density?

- · No stable states if α < 0.2
- Multiphase WA if $\alpha \sim 0.8$
- For α > 1.1, no unstable states
- $\cdot Z_0$: Classical S-curve

Z > Z_{sol} enhances multiphase

- Z < Z_{sol} reduces multiphase
- X-ray Group : Most effective group (C, O, Fe, Ne)
- Oxygen : Most effective element at 10⁵ K. Needed for WA.
- Iron : Most effective element needed at 10⁶ K. Iron was formed when T_{UNIV} = 1 Gyrs. WA before that different.

 $\cdot \alpha$ -elements only gas : WA unlikely

Soft Excess & Warm Absorber

✓ Soft X-ray spectra fit with powerlaw.

- ✓ Fits high energy ~ 1 10 keV.
- ✓ Leaves excess at lower energies ~ 0.5 keV.

≻What & Why?

 \checkmark Is likely to influence X-ray Group of elements & hence influence WA.

$$f(\nu) \sim \left[\left\{ \nu^{-\alpha} + \eta' \frac{2\pi h}{c^2} \frac{\nu^3}{\exp(h\nu/KT_{se}) - 1} \right\} + \eta'' f_{dbb}(\nu, T_{in}) \right] e^{\frac{\nu}{\nu_{max}}}$$

Blackbody as 'Soft excess'

 \checkmark Can be fit with blackbody – T_{se} ~ 0.15 keV.

✓ Normalisation wrt. powerlaw – variable parameter.

Fabian and co-authors Late 90's and earlier this decade

✓ Disk Blackbody has no effect

 \checkmark Soft excess : 10⁵ K phase. Remarkable stability. Solid support for gas in thermal equilibrium

✓ 10⁶ K phase : Unaffected

✓ T_{se} : No qualitative difference

- A combination of Soft Excess and Super Solar metallicity accounts for : Increased stability at 10⁵ K
- Multiphase scenario with 10⁵ K & 10⁶ K in pressure equilibrium

- · X-ray Group (C, O, Fe, Ne) : Most effective group
- Oxygen : Most effective element at 10⁵ K. Needed for WA.
- Iron : Most effective element needed at 10^6 K. Iron formed T_{UNIX} = 1 Gyrs. WA before and after that will be different.
- Continuum having significant "Soft Excess" enhances WA at 10⁵ K.

A combination of Soft Excess and Super Solar metallicity gives the best description of WA as gas in thermal equilibrium : Enhanced stability at 10⁵ K and multiphase scenario with 10⁵ K & 10⁶ K in pressure equilibrium