Advanced SPEX models

Jelle Kaastra

Contents

- NEI models
- DEM modeling
- Extended sources
- Other models

1. NEI models

- NEI = Non-Equilibrium Ionisation
- In most cases, plasmas assumed to be in Collisional Ionisation Equilibrium (CIE):
- $n_{z+1}R_{z+1}(T) n_zR_z(T) + n_{z-1}I_{z-1}(T) n_zI_z(T) = 0$
- R(T) & I(T) (recombination & ionisation rates) only depend on T → n_z(T) only function of T

NEI: basic principle

- When T changes, ion concentrations need to adjust
- Change occurs through collisions: T higher, more collisional ionisation; T lower: more radiative & dielectronic recombination
- How fast plasma adjusts, depends on average collision time (read: density)

NEI: basic equation

$$\frac{1}{n_{\rm e}(t)} \frac{\mathrm{d}}{\mathrm{d}t} \vec{n}(Z,t) = \mathbf{A}(Z,T(t))\vec{n}(Z,t)$$

$$\mathbf{A} = \begin{pmatrix} -I_0 & R_1 & 0 & 0 & \dots \\ I_0 & -(I_1 + R_1) & R_2 & 0 & & \\ 0 & I_1 & \dots & \dots & & \\ & \vdots & \ddots & \vdots & \dots & \\ & & \dots & R_{Z-1} & 0 & \\ & & \dots & 0 & I_{Z-2} & -(I_{Z-1} + R_{Z-1}) & R_Z \\ & & \dots & 0 & I_{Z-1} & -R_Z \end{pmatrix}.$$

See Kaastra & Jansen (1993) on how to solve this; Solution depends on $\int n_{\rm e}(t) \ dt$

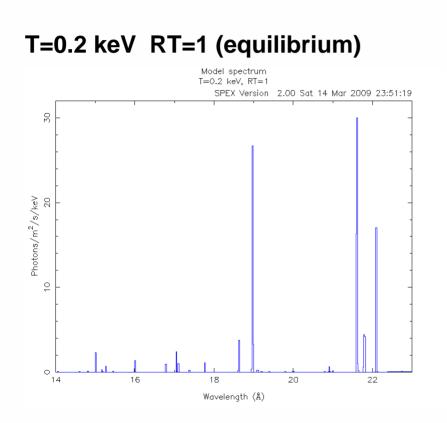
Vetherlands Institute for Space Research

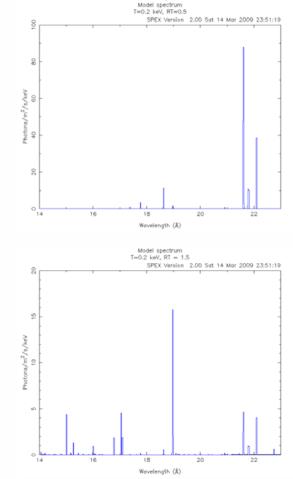
Simple way:

- Use CIE model in SPEX
- Parameter RT is ratio of T(balance) / T(spec)
- Ionisation balance (equilibrium) calculated using T(balance)
- Spectrum evaluated using T(spec)
- NON-physical model, but gives rough idea

Examples

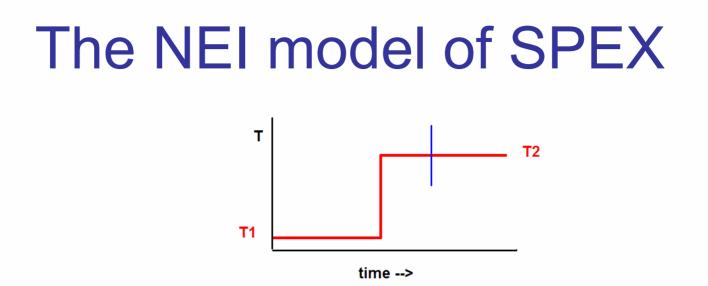
T=0.2 keV RT=0.5 (underionised)





S RON Netherlands Institute for Space Research

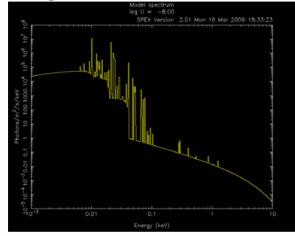
T=0.2 keV RT=2.0 (overionised)

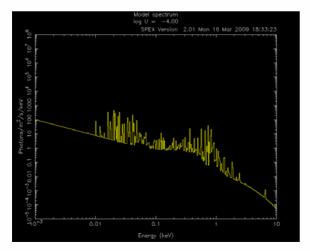


- Describes response of plasma jumping from T1 to T2
- Usually T1 low (e.g. 10⁴ K, almost neutral gas)
- Time dependence through U=∫n_e dt
- For $U \rightarrow \infty$, plasma reaches equilibrium
- In practice often for U≈10¹⁷ m⁻³s

Example of NEI spectra

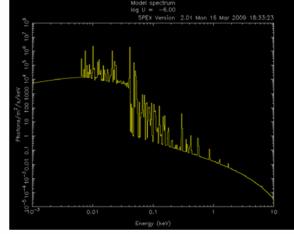
Log U=12

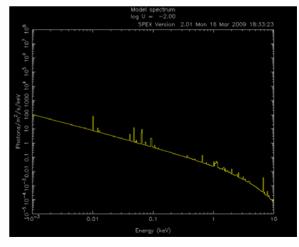




Log U=16

Log U=14





K

Examples of NEI spectra

- Supernova remnants (n=1 cm⁻³, t=1000 yr)
- Stellar flares (n=10¹⁷ m⁻³, t =10 s)
- Cluster outskirts? ($n=100 \text{ m}^{-3}$, t =10⁸ yr)

Did you know that ...

 You can make T1>T2 to mimic a recombining plasma

2. DEM Modelling

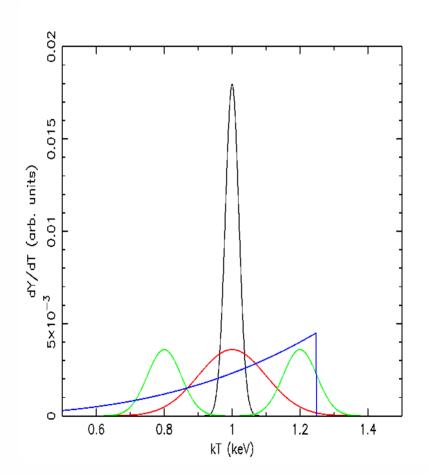
- Usual approach:
- Try 1T
- If fit not good, try 2T
- If still not good, try 3T
- Ad infinitum & often unstable (strong correlations between components)
- How to do a better job?

Basic concept: DEM

- In real sources, emission measure (Y=∫n_en_HdV) is integral over region with different physical properties
- T needs not to be constant over region (clusters, coronal loops, etc.)
- Introduce DEM = Differential Emission Measure, as function of T
- $\int DEM(T) dT \equiv Y$

Challenge with multi-T plasmas

- Line spectra insensitive to details DEM within T-range of factor 2
- All DEMs in example have same <T> and almost indistinguishable spectrum
- → bin T-range with steps of factor 2



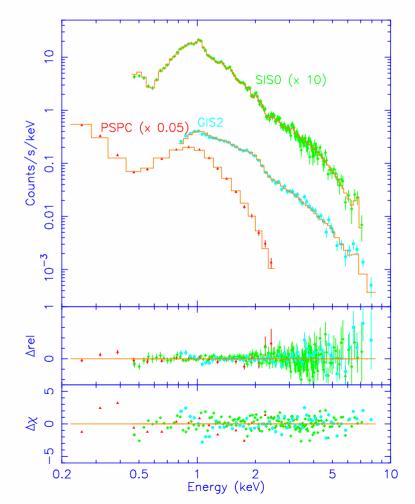
DEM techniques

- Make a library of basis spectra F_i(E) for a grid of temperatures
- Solve the equation:
- $S(E)=\Sigma Y_i F_i(E)$
- S(E) is observed spectrum
- Y_i are the (differential) emission measures

Example: AR Lac

(Kaastra et al. 1996)

 Fit to Rosat PSPC & ASCA GIS & SIS spectra



Regularisation method: principles

- Solve $S(E)=\Sigma Y_i F_i(E)$
- using constraint that 2nd order derivative Y_i is as smooth as possible
- Degree of smoothing controlled by regularisation parameter R (essentially smoothness / χ^2)
- R adjustable (R=0: no smoothing)

Pro and contra regularisation

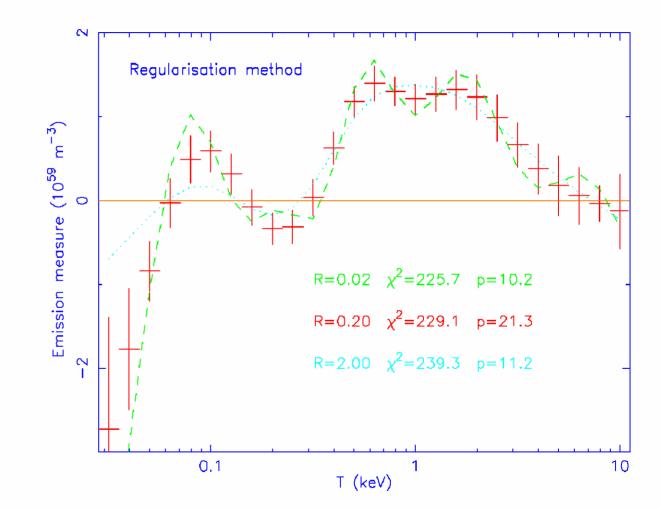
- Advantage: damp unwanted oscillations
- Disadvantage: solution can be negative
- SPEX solves this by introducing the "DEM penalty":

$$p \equiv \sum_{Y_i < 0} (Y_i / \Delta Y_i)^2$$

Advice: add p to χ^2 for tests of goodness

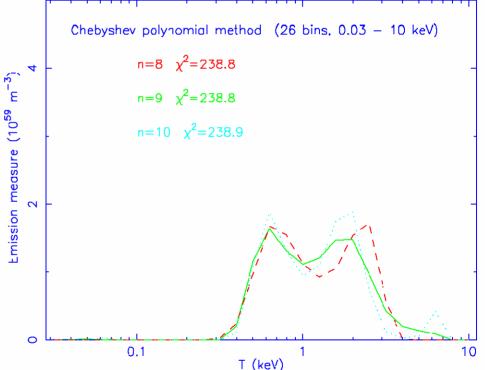
Regularisation method: practice

 All three solutions shown here acceptable



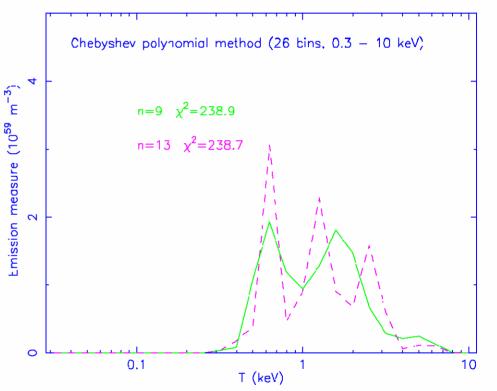
Polynomial method

- Model here log DEM(T) as an n-th degree polynomial
- n can be chosen, to get lowest χ^2
- Example here: n=8, 9 or 10 all give acceptable fits; look to the difference in solutions
- Works good for smooth DEMS



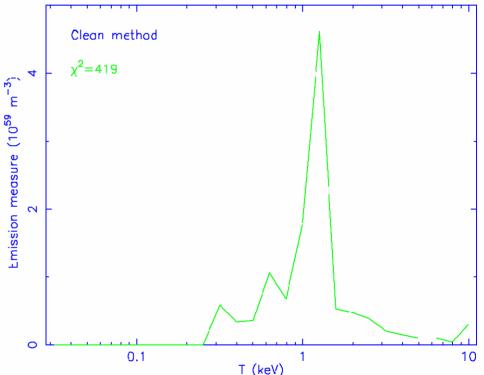
Polynomial method II

- Higher degrees of polynomial do not provide better fit
- They also are more spiky
- Advise: choose minimum n with acceptable χ^2 (e.g., χ^2 $< \chi^2_{min}$ +1)



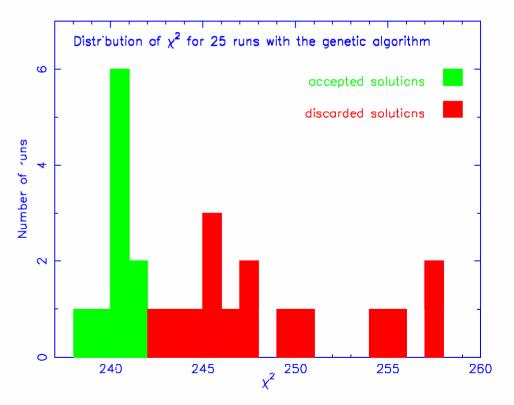
Clean method

- Clean method: derived from radio beam synthesis methods (Högbom 1974)
- Adds small (low Y) components that give best improvement χ² until convergence is reached
- Works good for "spiky" DEMS



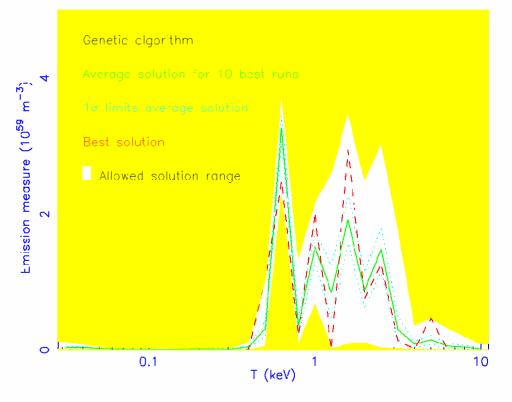
Genetic algorithm

- Uses geneitic algorithm (PIKAIA, Charbonneau 1995) to find minimum solution
- Example: results of 25 runs
- Sort solutions according to χ^2
- Pick out best solutions



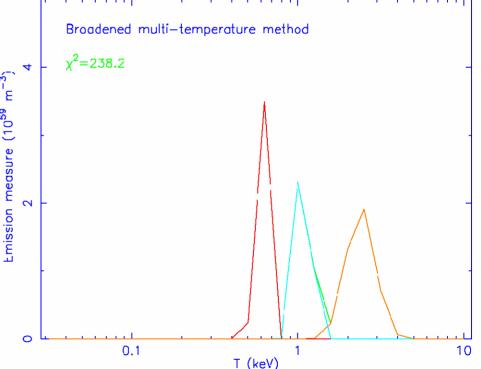
Genetic algoriothms II

 Doing multiple runs, you get an idea of allowed range of solutions



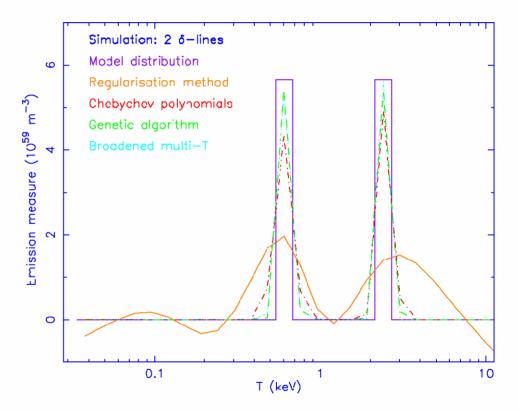
Multi-temperature method

- Alternative: use multiple Gaussian components (in log T)
 Works good for
- Works good for bimodal distributions
- Not always convergence, check the χ² (as for any DEM method)



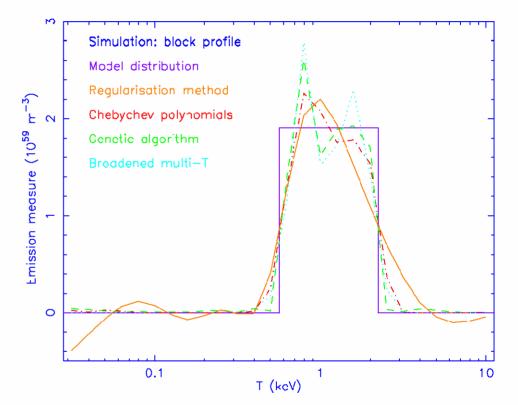
Comparison DEM methods I

- Input model: two delta-lines @ 0.6 & 2.4 keV
- See how different methods perform



Comparison DEM methods II

- Input model continuous distribution between 0.6 @ 2.4 keV
- See how different methods perform



3. Extended sources

- Two main challenges:
- Multi-temperature structure
- For grating spectra, additional spectral broadening due to way gratings work, usually Δλ=c Δθ → degradation of resolution, depending upon spatial distribution photons along dispersion axis

WDEM model

We also try to model the emission of the hot plasma with a differential emission measure (DEM) model with a cut-off power-law distribution of emission measures versus temperature (*wdem*). The *wdem* model appears to be a good empirical approximation for the spectrum in cooling cores of clusters of galaxies (e.g. Kaastra et al. 2004; Werner et al. 2006; de Plaa et al. 2006). The emission measure $Y = \int n_e n_H dV$ (where n_e and n_H are the electron and proton densities, V is the volume of the source) in the *wdem* model is specified in Eq. (1) adapted from Kaastra et al. (2004):

$$\frac{dY}{dT} = \begin{cases} AT^{1/\alpha} & T_{\min} < T < T_{\max}, \\ 0 & \text{elsewhere.} \end{cases}$$
(1)

The emission measure distribution has a cut-off at $T_{\min} = cT_{\max}$. For $\alpha \to \infty$ we obtain a flat emission measure distribution. The emission measure weighted mean temperature T_{\max} is given by:

$$T_{\text{mean}} = \frac{\int_{T_{\min}}^{T_{\max}} \frac{dY}{dT} T \, dT}{\int_{T_{\min}}^{T_{\max}} \frac{dY}{dT} dT}.$$
(2)

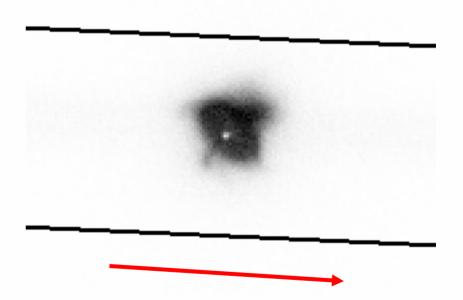
By integrating this equation between T_{\min} and T_{\max} we obtain a direct relation between T_{\max} and T_{\max} as a function of α and

$$T_{\text{mean}} = \frac{(1+1/\alpha)(1-c^{1/\alpha+2})}{(2+1/\alpha)(1-c^{1/\alpha+1})}T_{\text{max}}.$$
(3)

A comparison of the *wdem* model with the classical coolingflow model can be found in de Plaa et al. (2005). We note

Extended source example: Crab

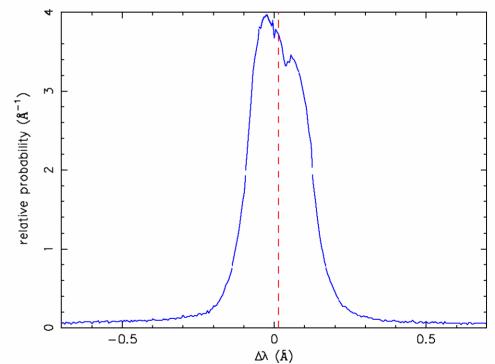
- Shown is MOS1 image
- Image collapsed in cross-dispersion direction and projected onto dispersion axis RGS



Dispersion direction

Effective line-spread function

 Plot shows spatial profile projected onto dispersion axis

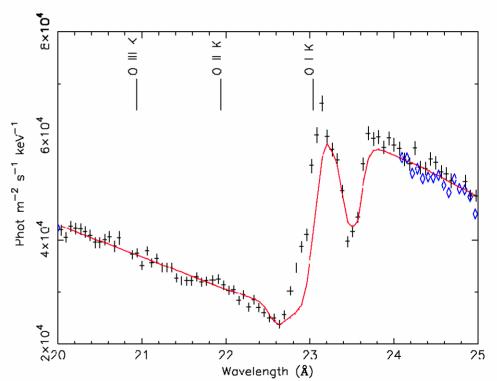


How is this implemented in SPEX?

- Provide an ascii file with two columns: cumulative probability distribution (between 0 and 1) versus λ
- Define the "lpro" component, and point there to the proper filename
- Apply the lpro component to any additive component in model that is broadened
- You can have multiple lpro components, with different files

Example: Fit to RGS Crab spectrum

- The O I 1s-2p line @ 23.5 Å (& full spectrum) clearly broadened by spatial extent Crab
- Why is fit not perfect? (answer: dust)



4. Some other models in SPEX

- Emission models
- Convolution models

Other emission models in SPEX

- Cf: classical cooling flow model
- Spln: spline (continuum)
- File: table model
- Refl: reflection model Zycki
- SNR models (Sedov, Band, Chevalier, Solinger)
- Rrc: radiative recombination continua
- etc

Convolution models

- Laor profiles (relativistic lines)
- Gaussian broadening (vgau)
- Rectangular broadening (vblo)
- Arbitrary velocity broadening (vpro)

Other goodies

Sectors & regions: see SPEX manual

Cooling flows

