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Outline
Parent distributions: concept and examples

Central limit theorem, Gaussian errors and χ2

Methods for Gaussian errors: linear, non-linear

General methods: amoebe, genetic algorithms

Binning

Excerpted from full notes:
www.astro.uu.nl/˜verbunt/onderwijs/observe/lnotes.pdf

based a.o. on Bevington
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Parent distribution: concept

How not to. . .
what is the probability that
during this lecture we are hit
by a meteorite?

there are two possibilities:
yes/no

thus the probability is 50%

How to. . .
Determine

possible outcomes

their (relative) probabilities

The combination is the parent
distribution. It is never know
exactly, always only
approximately
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Parent distribution: binomial

expected: µ photons in time T , divide T in n slots

each slot has probability p = µ/n to receive photon

with n trials the probability of k hits and thus n − k empty is

PB(k , n, p) =

(
n
k

)
pk (1 − p)n−k
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Parent distribution: Poisson

expected: µ photons in time T , divide T in n slots

each slot has probability p = µ/n to receive photon

to avoid 2 photons in 1 trial, take limit n → ∞ with np constant

PP(k , µ) =
µk

k !
e−µ
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Parent distribution: Binomial to Poisson
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Parent distribution: Gauss

expected value µ photons in time T

for large µ the Poisson distribution is well approximated with the
Gauss distribution

PG(x, µ, µ) ≡
1

σ
√

2π
e−(x−µ)

2/2µ2
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Parent distribution: Poisson to Gauss
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Parent distribution: when to use which one

Gauss and normal

G(x, µ, σ) ≡
1

σ
√

2π
e−(x−µ)

2/2σ2

coordinate transformation:
z = (x − µ)/σ gives normal
distribution:

PG(x) =
1
√

2π
exp

[
−

1
2

x2
]

when to use
binomial: each trial has
outcome yes or no

Poisson: each trial has range
of possible outcomes

Gauss: replaces Poisson for
large expectation value

for photon counts Gauss is
never exact: in particular
large deviations are more
likely in Poisson
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Central limit theorem

Concatenation of uncertainties
The central limit theorem
states that a sequence of
various distributions applied
consecutively will
approximate a Gaussian

For this reason and for its
computational simplicity, the
assumption of Gaussian
error distributions is often
used

How do we know?
once we have a fit, we can
plot distribution of the errors
and check whether it looks
Gaussian

in general the errors are
NOT Gaussian

but the fit obtained by
assuming they are is often
not far wrong. . .

how far is too far?
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Gaussian errors and χ2 minimalization (Press et al.)

measurements yi with associated Gaussian errors σi

i.e. each drawn from a Gaussian around model value ym

probability for one measurement yi , in an interval ∆y, is

Pi∆y =
1

√
2πσi

e
−(yi−ym)2

2σi
2 ∆y

The overall probability of a series is:

P(∆y)N ≡

N∏
i=1

(Pi∆y) =
1

(2π)N/2 ∏
i σi

exp

−1
2

N∑
i=1

(yi − ym)2

σi
2

 ∆yN

The highest probability P is that for which

χ2 ≡

N∑
i=1

χi
2 ≡

N∑
i=1

(yi − ym)2

σi
2

is smallest.
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Gaussian errors and χ2 minimalization

the observed χ2

N measurements yi at
measurement points xi

each yi is drawn from a
Gaussian

i.e. each χi ≡ (yi − ym)/σi is
a draw from the normal
distribution

square all χi ’s and add:
χ2 ≡

∑N
i=1 χ

2
i

In a fit with N measurements and
M fit parameters we have
ν ≡ N −M independent draws

χ2-distribution
Simulate a measurement by
randomly choosing a set of ν
values yi at xi

this is called a realization

compute for many
realizations the χ2, to obtain
the χ2-distribution for ν

for a Gaussian, this can be
done semianalytically

ν ≡ N −M is called ‘degrees
of freedom’ or d.o.f.
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Gaussian errors and χ2 minimalization

Semi-analytic
consider the incomplete
Gamma function:

Q(a, x) ≡
1

Γ(a)

∫ ∞

x
ta−1e−tdt

the fraction of χ2 > χ2
o is

given by Q with
a = 0.5(N −M) and
x = 0.5χ2

o

the probability of obtaining a
χ2 as observed or bigger is
given hereby

Rule of thumb
if ν ≡ N −M is large, then we
expect roughly

χ2 ' N −M; χ2
r ' 1

with a spread
√

2(N −M)

if χ2 high, Q very small
the model is wrong

σi under-estimated

errors not Gaussian

or a combination of these. . .
hence: tolerance of ‘low’ Q ,
e.g. 0.05 or 0.01
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Gaussian errors and χ2 minimalization

Effect of non-reporting
a person has guessed a 6
digit number correctly

the probability is 1 in 106

so that person is special!

unless she/he is one of a
million persons who
guessed. . .

If only significant results are
published, the significance of
published results will be
over-estimated

A good fit
consists of three parts

the best value parameters

the uncertainties on these
parameters

the probability that the model
describes the data (either χ2

and d.o.f. or Q)

Frank Verbunt (Astronomical Institute Utrecht) Fitting data March 17, 2009 13 / 26



See what is wrong, without knowing details. . .

Number of days/yr Number of systems vs. MV
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χ2 minimalization with linear dependence on model
parameter: example weighted average

model ym = a. Minimize χ2 with respect to a:

∂

∂a

 N∑
i=1

(yi − a)2

σi
2

 = 0⇒
N∑

i=1

yi − a
σi

2
= 0⇒ a =

∑N
i=1

yi
σi

2∑N
i=1

1
σi

2

a is a function of the variables y1, y2, . . .. If the measurements yi are not
correlated, we find the variance for a from

σa
2 =

N∑
i=1

σi
2
(
∂a
∂yi

)2 =
N∑

i=1

σi
2

 1/σi
2∑N

k=1(1/σk
2)

2 =
1∑N

i=1(1/σi
2)

In general: if ym is a linear function of model parameters ak (k = 1,M) the
summations can be done without knowing ak , and the solution is found
directly
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Gaussian errors and χ2 minimalization

linear: straight line

ym(xi , a, b) = a + bxi

minimize χ2:

∂
∑N

i=1[(yi − a − bxi)/σi]
2

∂a
= 0

⇒

N∑
i=1

(
yi − a − bxi

σi
2

)
= 0⇒

N∑
i=1

yi

σi
2
−a

N∑
i=1

1
σi

2
−b

N∑
i=1

xi

σi
2

= 0

again: sums can be done without
knowing a, b: direct solution
possible

Nonlinear example: sine

ym = sin(ax) Minimize χ2:

∂χ2

∂a
= 0 =

−2
N∑

i=1

[yi − sin(axi)]xi cos(axi)

σi
2

One cannot do the sums without
a value for a. Hence the solution
must be found iteratively
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χ2 minimalization with Levenberg-Marquardt

one dimension
far from minimum use

an+1 = an − K
∂χ2

∂a

Close to minimum approximate

χ2(a) = p + q(a − amin)2

∂χ2/∂a = 2q(a − amin)

∂2χ2/∂a2 = 2q

⇒ a − amin =
∂χ2/∂a
∂2χ2/∂a2

more dimensions ym(x, ~a)

χ2(~a) ' p − ~q · ~a +
1
2
~a · ~~D · ~a

∂χ2

∂ak
= −2

N∑
i=1

[yi − ym]

σi
2

∂ym

∂ak
≡ −2βk

1
2

∂χ2

∂ak∂al
≡ αkl =

N∑
i=1

1
σi

2

[
∂ym

∂ak

∂ym

∂al
− [yi − ym]

∂2ym

∂ak∂al

]
thus βk = λαkkδak or βk =

∑M
l=1 αklδal
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χ2 minimalization with Levenberg-Marquardt

matrix equation

βk =
M∑

l=1

αklδal

with

αkl =
N∑

i=1

1
σi

2

[
∂ym

∂ak

∂ym

∂al

]
iterate computation of δai until
minimum of χ2 is reached. If ai

not correlated, then

δχ2 = δ~a · ~~α · δ~a = αkkδak
2

Problems
requires reasonably close
first estimate

may converge to local
minimum: try different
starting solutions

when number of parameters
big: matrix very large

First derivative
when not analytic

then compute numerically
(with small step in ai)
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Poisson errors and maximum-likelihood (Cash)

Example: a rosat image frame, with 0, 1, 2

counts per pixel smoothed + optical

clearly, Gaussian statistics don’t apply. what to do?
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Poisson errors and maximum-likelihood

ni photons when mi expected

Pi =
mi

ni e−mi

ni!

Maximize overall probability
L ′ ≡

∏
i Pi :

ln L ′ ≡
∑

i

ln Pi =

∑
i

ni ln mi −
∑

i

mi −
∑

i

ln ni!

or equivalently minimize

ln L ≡ −2

∑
i

ni ln mi −
∑

i

mi


This is called maximum-likelihood

Comparing models
models A and B

number of fitted parameters
nA , nB

likelihoods ln LA , ln LB

∆L ≡ ln LA − ln LB

is χ2 distribution with nA − nB

d.o.f. (for a sufficient number of
photons)

probability of best solution
from simulations

Frank Verbunt (Astronomical Institute Utrecht) Fitting data March 17, 2009 20 / 26



General fitting methods: amoebe

When?
when number of parameters
of χ2 too big

when errors not Gaussian

General
do not use derivative: easier
to programme, esp. for
complicated derivative

no fast convergence

errors must be computed
explicitly by changing
parameter of best solutions

Amoebe in 2-d

find worst point and move it

repeat (also with other
points) until minimum
reached
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General fitting methods: genetic algorithm

χ2 or L varies erratically

f(x, y) =

[16x(1 − x)y(1 − y) sin(nπx) sin(nπy)]2

varies smoothly for n = 1 (top)

varies wildly for n = 9 (bottom)

Levenberg-Marquardt fails miserably. . .

surprisingly, amoebe works well

Charbonneau
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General fitting methods: genetic algorithm

two parameters: x,y

paste digits together to
make ‘animal’

make generation of
e.g. 100 animals

compute goodness of
fit χ2 or L for each
animal

assign breeding
probability according
to goodness of fit

breed with changeover
and mutation
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General fitting methods: genetic algorithm

Properties
fitness (i.e. breeding
probability) on ranking
(e.g. rank n has
probability ∝ 1/n)

elitism: keep best
solution(s)

mutation rate not too
high, esp. in beginning

final convergence slow

fun variant: bad sheep
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Some remarks on binning

One should not bin too much
Rue-of-thumb: 3 bins per FWHM resolution of instrument

χ2 =
N∑

i=1

(
Ni −Mi

σi

)2

with σi =
√

Ni . Split each bin in p
bins: N′i = Ni/p, M′i = M/p,
σ′i =

√
Ni/p = σi/

√
p hence

χ′2 = χ2/p

with smaller χ2 and larger N, the
quality of fit Q will be bigger. ⇒ by
oversampling an unacceptable fit
may be made acceptable

Gaussian
the Fourier transform is also
Gaussian

small bins are high spatial
frequencies

but with small number of
photons we have no info on
high spatial variability

⇒ FT components at high
frequencies are spurious
(noise)
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Fitting data: an introduction

Frank Verbunt
MSSL meeting on high-resolution X-ray spectroscopy

17 March 2009

Conclusion
Statistics is not all that difficult

Combine some basic knowledge with common sense

More explanation and references in Lecture Notes:
www.astro.uu.nl/˜verbunt/onderwijs/observe/lnotes.pdf
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