XMM-Newton Observations of Unidentified Gamma-Ray Objects

- New Results in X-ray Astronomy, MSSL, 11th July 2006 -

R. Mignani (UCL-MSSL)
N. La Palombara, P.A. Caraveo (IASF)
E. Hatziminaoglou, M. Schirmer (IAC)
G.F. Bignami (CESR)
Gamma Ray Sources ID History

SAS-2 (1972-1973): 3 γ-ray sources detected, 2 identified

COS-B (1975-1982): 5 γ-ray sources detected, 3 identified

GRO (1991-2000): 271 γ-ray sources detected, 96 identified
The majority of the 3EG gamma-ray objects are still unidentified.

≈ 50% of high-latitude UGOs are identified, mostly associated with AGNs.

≈ 10% of low-latitude UGOs are identified, mostly associated with PSRs.
Possible IDs of Galactic UGOs

- The nature of low-latitude UGOs is unclear
- Candidates: SNRs, MicroQuasars, X-ray Binaries, Pulsars, Undiscovered

MicroQuasars:
- 3EG J1824-1514 (Mc Swain et al. 2004)
- 3EG J0241+6103 (Casares et al. 2005)
- 3EG J1639-4702 (Combi 2004) - ?

Pulsars (?):
- 3EG J0222+4253 (Kuiper et al. 2002)
- 3EG J1048-5840 (Kaspi et al. 2000)
- 3EG J2021+3716 (Roberts et al. 2002)
- 3EG J2227+6122 (Halpern et al. 2001)
- 3EG J1420-6038 (D'Amico et al. 2001)
- 3EG J1837-0606 (D'Amico et al. 2001)
- 3EG J1013-5915 (Camilo et al. 2001)

X-ray Binaries (?):
- 3EG J0634+0521 (Kaaret et al. 2000)
- 3EG J0542+2610 (Romero et al. 2001)
UGOs-PSRs connection

- PSRs are still the most likely counterparts to low-latitude UGOs
- Unfortunately, ID via gamma-ray timing is difficult:
 - Less Photons hamper blind searches via FFT
 - Lack of a reference period for light curve folding
 - Large Error Boxes \Rightarrow Bad Timing accuracy
 - Uncertain source position (< 1 deg) \Rightarrow Δt (ms) ~ 2.3 $\Delta r''$
 - Uncertain correction to SSB

- Step-by-Step Multi-Wavelength approach is the only way
 - Search for possible X-ray counterparts
 - Optical identification of possible X-ray counterparts
 - Select X-ray sources with no (bright) optical counterpart, supposed to be Isolated Neutron Stars (INSs)
“The Geminga Approach”

- EINSTEIN/IPC mapping of the COS-B error box → X-ray counterpart
- EINSTEIN/HRI follow-up → Better Position
- Optical counterpart G" detected with the CFHT
- $L_{\gamma}/L_{\chi} \approx 1000 + L_{\chi}/L_{\text{opt}} \approx 1000$ ~ Vela Pulsar → INS
- Discovery of X-ray and γ-ray pulsations (237 ms) with ROSAT and GRO
3EG J0616-3310 & 3EG J1249-8330

- Pilot project carried out on two unidentified EGRET sources
 - Not too low gal lat to avoid galactic plane confusion
 - Not too high gal lat to minimize AGN contamination

- No radio counterparts

- Relatively bright: \(F_{\gamma} (>100 \text{ Mev}) \sim 13-20 \times 10^{-8} \text{ ph cm}^{-2} \text{ s}^{-1} \)
- Pulsar-like spectral shape: photon index \(\Gamma \sim 2.1 \)
- No evidence for gamma-ray variability
- Good Positioning \(\sim 0.65 \) degrees radius
X-ray Observations

• X-ray coverage of the two EGRET error boxes with XMM

• 4xEPIC pointings (~10 ks) per EGRET error box

<table>
<thead>
<tr>
<th>Obs. ID</th>
<th>Rev.</th>
<th>Date</th>
<th>Pointing Coordinates</th>
<th>Exposure Time (ks)</th>
<th>N_H (10^{20} cm^{-2})</th>
<th>Detected Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>346</td>
<td>2001-10-29T17:04:09</td>
<td>06 17 47.1</td>
<td>−32 55 13.9</td>
<td>6.8</td>
<td>11.4</td>
</tr>
<tr>
<td>2</td>
<td>341</td>
<td>2001-10-18T23:53:02</td>
<td>06 17 47.1</td>
<td>−33 25 13.9</td>
<td>6.7</td>
<td>12.0</td>
</tr>
<tr>
<td>3</td>
<td>346</td>
<td>2001-10-29T04:27:17</td>
<td>06 15 24.1</td>
<td>−33 25 13.9</td>
<td>2.5</td>
<td>7.3</td>
</tr>
<tr>
<td>4</td>
<td>346</td>
<td>2001-10-28T23:26:57</td>
<td>06 15 24.1</td>
<td>−32 55 13.9</td>
<td>1.3</td>
<td>6.3</td>
</tr>
<tr>
<td>5</td>
<td>236</td>
<td>2001-03-23T12:55:43</td>
<td>12 57 53.1</td>
<td>−83 15 01.9</td>
<td>7.0</td>
<td>11.2</td>
</tr>
<tr>
<td>6</td>
<td>236</td>
<td>2001-03-24T17:54:20</td>
<td>12 57 53.1</td>
<td>−83 45 01.9</td>
<td>8.2</td>
<td>11.2</td>
</tr>
<tr>
<td>7</td>
<td>239</td>
<td>2001-03-29T22:28:14</td>
<td>12 40 13.1</td>
<td>−83 15 01.9</td>
<td>8.3</td>
<td>12.7</td>
</tr>
</tbody>
</table>

• Problems with pointing #7 due to high particle background

• Observations described in La Palombara et al. (2004); La Palombara, Caraveo, Mignani et al. (2005)
X-ray Data Analysis

- **X-ray data reduction** using the Standard Analysys Software (SAS)
 - Hot, flickering pixels, bad columns removed
 - Cosmic rays cleaning
 - Rejection of Time Intervals affected by high background
 - Selection of Good Time Intervals (GTI)
 - Exposure maps generate to account for QE, vignetting, exposure

- **X-ray Catalogue production**
 - EPIC PN+MOS1,2 event files merged to increase S/N (spatial binning 4.35")
 - X-ray Source Extraction in 2 Coarse + 5 Fine energy bands
 - Minimum Detection Likelihood: \(-\ln P > 8.5 \) in at least one energy band

 3EG 0616-3310: 146 X-ray sources down to \(F_{(0.5-2 \text{ Kev})} \sim 4 \times 10^{-15} \text{ erg cm}^{-2} \text{ s}^{-1} \)

 3EG 1249-8330: 148 X-ray sources down to \(F_{(0.5-2 \text{ Kev})} \sim 4 \times 10^{-15} \text{ erg cm}^{-2} \text{ s}^{-1} \)

- **X-ray Spectral Analysis**
 - The short exposure time does not yield enough counts for spectral fitting
 - Spectral information from the Hardness Ratios (HRs) over 7 energy bands
 - Measured HRs compared with simulated HRs for two spectral models: thermal bremsstrahlung \((kT=0.5, 1, 2, 5) \) and power-law \((\Gamma=1, 1.5, 2, 2.5) \)
Optical Observations

• Optical (BVRI) coverage with the 4x2 CCDs ESO 2.2m/WFI

• Additional BRI with GSC2.3 and JHK with 2MASS

<table>
<thead>
<tr>
<th>Date (dd.mm.yyyy)</th>
<th>Obs. ID</th>
<th>Filter Name</th>
<th>Num. Frames</th>
<th>Exposure Time (s)</th>
<th>Average Seeing</th>
<th>Average Airmass</th>
</tr>
</thead>
<tbody>
<tr>
<td>06.03.2002</td>
<td>2</td>
<td>U</td>
<td>5</td>
<td>2500.0</td>
<td>0.76</td>
<td>1.15</td>
</tr>
<tr>
<td>06.03.2002</td>
<td>2</td>
<td>B</td>
<td>5</td>
<td>1500.0</td>
<td>0.68</td>
<td>1.28</td>
</tr>
<tr>
<td>10.02.2002</td>
<td>2</td>
<td>V</td>
<td>5</td>
<td>2000.0</td>
<td>0.71</td>
<td>1.30</td>
</tr>
<tr>
<td>05.03.2002</td>
<td>3</td>
<td>U</td>
<td>5</td>
<td>2500.0</td>
<td>0.57</td>
<td>1.14</td>
</tr>
<tr>
<td>10.02.2002</td>
<td>3</td>
<td>V</td>
<td>5</td>
<td>2000.0</td>
<td>0.00</td>
<td>1.16</td>
</tr>
<tr>
<td>05.03.2002</td>
<td>3</td>
<td>R</td>
<td>5</td>
<td>2000.0</td>
<td>0.85</td>
<td>1.05</td>
</tr>
<tr>
<td>08.03.2002</td>
<td>3</td>
<td>I</td>
<td>13</td>
<td>3250.0</td>
<td>0.92</td>
<td>1.18</td>
</tr>
<tr>
<td>05.03.2002</td>
<td>4</td>
<td>U</td>
<td>5</td>
<td>2500.0</td>
<td>0.87</td>
<td>1.30</td>
</tr>
<tr>
<td>12.12.2001</td>
<td>4</td>
<td>B</td>
<td>5</td>
<td>1500.0</td>
<td>0.97</td>
<td>1.05</td>
</tr>
<tr>
<td>12.12.2001</td>
<td>4</td>
<td>V</td>
<td>5</td>
<td>2000.0</td>
<td>1.03</td>
<td>1.01</td>
</tr>
<tr>
<td>17.12.2001</td>
<td>4</td>
<td>R</td>
<td>5</td>
<td>2000.0</td>
<td>0.89</td>
<td>1.11</td>
</tr>
</tbody>
</table>

• (WFIx5)x4x4 pointings per EGRET error box (FOV ≈ 0.5x0.5 deg ≈ EPIC)

• Observations executed in Service Mode

• Not all pointings completed due to bad weather and scheduling constraints

• Error box of 3EG 1249-8330 poorly covered
Optical Data Analysis

- **Optical data reduction** with the THELI pipeline:
 - Basic Reduction (chip by chip on parallel CPUs)
 - Astrometric Calibration → Distorsion Map → Distorsion Correction
 - Image Stacking, CR rejection
 - Exposure Map Correction
 - Photometric Calibration

- **Catalogue production** using tools developed in the ESO Imaging Survey
 - Object Extraction → Single-Bands Catalogues
 - Multi-Band WFI Catalogues
 - Multi-Band WFI + 2MASS and GSC2

<table>
<thead>
<tr>
<th>Field</th>
<th>U</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5688</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>20837</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>32202</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>34093</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>11329</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>7423</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>6820</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>15578</td>
<td></td>
</tr>
</tbody>
</table>
red = 0.3-1 keV
green = 1-3 keV
blue = 3-10 keV

red = R band
green = V band
blue = B band

XMM/EPIC

ESO2.2m/WFI

33 arcmin
The Strategy

- **Automatic Optical Classification**
 - Model SEDs library (stars, galaxies)
 - Convolution with band response → Simulated magnitudes
 - Interstellar Extinction evaluation (Schlegel maps)
 - Simulated vs Observed magnitudes → Optical Classification

- **X-ray vs Optical Multi-Band Catalogues Matching**

- **X-ray Source Classification**
 - \(F_x / F_{opt} \) → Distinctive of X-ray Source Class
 - HRs → Distinctive of X-ray Source Class
 - X-rays + Optical Classifications
 - Information passed to a Decision -Tree Algorithm

← Still to be fine-tuned
X-ray/Optical Cross-Correlations

<table>
<thead>
<tr>
<th>Obs. ID</th>
<th>Detected Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>37</td>
</tr>
<tr>
<td>3</td>
<td>32</td>
</tr>
<tr>
<td>4</td>
<td>27</td>
</tr>
<tr>
<td>Total</td>
<td>146</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X-ray sources with counterpart</th>
<th>Candidate Counterparts</th>
<th>Reliability (1-P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>26</td>
<td>84 %</td>
</tr>
<tr>
<td>30</td>
<td>46</td>
<td>76 %</td>
</tr>
<tr>
<td>25</td>
<td>41</td>
<td>82 %</td>
</tr>
<tr>
<td>24</td>
<td>40</td>
<td>70 %</td>
</tr>
<tr>
<td>Total</td>
<td>102</td>
<td>153</td>
</tr>
</tbody>
</table>

Optical coverage less deep for 3EG1249-8330 than for 3EG 0616-3310

\[P = 1 - e^{-\pi r^2 \mu} \]

\(r = \text{cross-correlation radius} = 5'' \)

\(\mu = \text{objects surface density per sq. degree} \)

16% < P < 30% → chancce coincidence contamination significant
The F_x/F_{opt} ratio Classification Scheme

$$\frac{f_{X,XMM}}{f_B} = \frac{f_{X,Hamburg-RASS}}{f_B} \times \frac{f_{0.3-10,PL}}{f_{0.1-2.4,MOD}}.$$

CR-Flux conversion

$$\frac{f_B}{f_{BJ}} = \frac{f_{B,Vega}}{f_{BJ,Vega}} \times 10^{-\frac{(B-B_J)/2.5}{2.5}} = 0.822 \times 10^{-\frac{(B-B_J)/2.5}{2.5}}.$$

Flux conversion

<table>
<thead>
<tr>
<th>Obs. ID</th>
<th>Stars</th>
<th>WDs</th>
<th>CVs</th>
<th>Galaxies</th>
<th>Clusters</th>
<th>AGN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.10±0.43</td>
<td>+0.74±2.65</td>
<td>-1.33±1.31</td>
<td>-0.81±1.72</td>
<td>-0.13±1.91</td>
<td>-0.02±1.70</td>
</tr>
<tr>
<td>2</td>
<td>-0.90±0.42</td>
<td>+0.73±2.64</td>
<td>-1.33±1.30</td>
<td>-0.81±1.72</td>
<td>-0.12±1.91</td>
<td>0---1.71</td>
</tr>
<tr>
<td>3</td>
<td>-0.71±0.41</td>
<td>+0.69±2.59</td>
<td>-1.35±1.28</td>
<td>-0.82±1.71</td>
<td>-0.13±1.91</td>
<td>-0.04±1.68</td>
</tr>
<tr>
<td>4</td>
<td>-0.32±0.39</td>
<td>+0.64±2.55</td>
<td>-1.37±1.27</td>
<td>-0.82±1.71</td>
<td>-0.13±1.91</td>
<td>-0.04±1.68</td>
</tr>
<tr>
<td>5</td>
<td>-0.18±0.35</td>
<td>+0.85±2.76</td>
<td>-1.22±1.41</td>
<td>-0.70±1.83</td>
<td>-0.23±2.01</td>
<td>-0.08±1.81</td>
</tr>
<tr>
<td>6</td>
<td>-0.05±0.34</td>
<td>+0.85±2.75</td>
<td>-1.24±1.40</td>
<td>-0.72±1.81</td>
<td>-0.21±2.00</td>
<td>-0.07±1.79</td>
</tr>
<tr>
<td>7</td>
<td>-0.13±0.49</td>
<td>+0.78±2.68</td>
<td>-1.27±1.37</td>
<td>-0.73±1.80</td>
<td>-0.21±2.00</td>
<td>-0.05±1.77</td>
</tr>
<tr>
<td>8</td>
<td>-0.07±0.55</td>
<td>+0.87±2.77</td>
<td>-1.31±1.43</td>
<td>-0.69±1.84</td>
<td>-0.24±2.03</td>
<td>-0.10±1.83</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Obs. ID</th>
<th>Stars</th>
<th>WDs</th>
<th>CVs</th>
<th>Galaxies</th>
<th>Clusters</th>
<th>AGN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.90±0.43</td>
<td>+1.00±3.79</td>
<td>-1.02±1.42</td>
<td>-0.54±1.83</td>
<td>-0.38±2.11</td>
<td>-0.25±1.72</td>
</tr>
<tr>
<td>2</td>
<td>-0.81±0.42</td>
<td>+0.99±2.69</td>
<td>-1.02±1.41</td>
<td>-0.54±1.83</td>
<td>-0.37±2.10</td>
<td>-0.26±1.73</td>
</tr>
<tr>
<td>3</td>
<td>-0.90±0.41</td>
<td>+0.95±2.65</td>
<td>-1.04±1.39</td>
<td>-0.55±1.82</td>
<td>-0.38±2.11</td>
<td>-0.23±1.70</td>
</tr>
<tr>
<td>4</td>
<td>-0.32±0.39</td>
<td>+0.88±2.60</td>
<td>-1.06±1.38</td>
<td>-0.56±1.81</td>
<td>-0.38±2.11</td>
<td>-0.22±1.69</td>
</tr>
<tr>
<td>5</td>
<td>-0.09±0.35</td>
<td>+1.11±2.81</td>
<td>-1.09±1.52</td>
<td>-0.44±1.94</td>
<td>-0.48±2.21</td>
<td>-0.35±1.82</td>
</tr>
<tr>
<td>6</td>
<td>-0.13±0.49</td>
<td>+1.10±2.86</td>
<td>-1.02±1.51</td>
<td>-0.45±1.92</td>
<td>-0.46±2.19</td>
<td>-0.34±1.81</td>
</tr>
<tr>
<td>7</td>
<td>-0.13±0.49</td>
<td>+1.04±2.74</td>
<td>-0.96±1.48</td>
<td>-0.47±1.91</td>
<td>-0.46±2.20</td>
<td>-0.32±1.78</td>
</tr>
<tr>
<td>8</td>
<td>-0.07±0.55</td>
<td>+1.12±2.82</td>
<td>-0.90±1.54</td>
<td>-0.42±1.95</td>
<td>-0.49±2.22</td>
<td>-0.37±1.84</td>
</tr>
</tbody>
</table>
Candidates Selection

- 125 X-ray sources with no optical counterpart selected. "Cesarean Cut" approach

- 9 X-ray sources with $F_x/F_{opt} > 100$

- F_x/F_{opt} \rightarrow no stars, no AGNs, no galaxies, no XRBs \rightarrow hot stars (i.e. possible NSs)

- 8 X-ray sources with softer spectra, i.e. $KT<0.5$ keV and/or detected <1 keV only

- Possible Geminga-like INS candidates
Summary

- **3EG 0616-3310:**
 - About 30% have no optical counterpart down to V~24.5
 - 8 X-ray sources with Fx/Fopt > 100
 - 5 X-ray sources with a soft thermal spectrum
 - One X-ray source with both Fx/Fopt > 100 and a soft thermal spectrum

- **3EG 1249-8330:**
 - About 55% have no optical counterpart down to V~24.5
 - 1 X-ray source with Fx/Fopt > 100
 - 3 X-ray sources with a soft thermal spectrum

- Best candidates sorted according to Fx/Fopt
 - XMMU J061429.8-333225 for 3EG 0616-3310
 - XMMU J124642.5-832212 for 3EG 1249-8330

- Deep follow-up XMM investigation of UGO candidate counterparts in progress (timing, spectroscopy)
Future Work (i)

- **Extend the work to other selected EGRET UGOs**
 - Large program → More targets → More data → More efficiency

- **Exploit public X-ray archives and catalogues with their built-in XIDs**
 - X-ray pointings may easily overlap partially but not cover completely a whole EGRET error box
 - Selection by instrument mode to maximize FOV reduces the useful data set

- **Exploit public optical archives (e.g. ESO, CADC)**
 - Probability of finding optical data which (by chance) overlap with an X-ray field which (by chance) overlap with an EGRET error box is likely very small
 - Color coverage, critical for object classification, may not be adequate
 - FOVs of optical imaging devices is generally small (< 10x10 arcmin)

- **Exploit existing public CCD surveys (e.g. the SDSS)**
 - Sky coverage limited to selected sky areas
Future Work (ii)

- **Exploit new/future wide field optical/IR facilities**
 - MegaCam@CFHT, a 5x8 CCDs 1x1 deg optical/IR imaging camera
 - VST, a 2.5m ESO survey telescope equipped with the 4x8 CCDs 1x1 deg ΩCam (to be commissioned by Q4 2006)
 - VISTA, a 4m UK/ESO survey telescope with a 4x4 chip 1x1 deg IR detectors array (to be commissioned by Q2 2007)
 - ≈ 4x WFI

- **Improve data processing/analysis**
 - Data processing with parallel CPUs on Beowulf-like clusters
 - Smarter automatic classification algorithms (self learning by training sets)
Future Work (iii)

- The 3rd GRO/EGRET catalogue is still the reference
- No High Energy Gamma-ray coverage currently flying
- Wait for upcoming gamma-ray satellites

- **AGILE** (Astrorivelatore Gamma ad Immagini LEggero)
 - To be launched in 2006
 - 0.3° positioning, 60 deg f.o.v., sensitivity ≈ GRO/EGRET

- **GLAST** (Gamma-ray Large Area Space Telescope)
 - To be launched by Q3 2007
 - 0.15° positioning, 2.5 sr f.o.v., sensitivity: x50 GRO/EGRET

- Better statistics → improved timing and spectral analysis
- Better positioning → XMM follow-ups, one pointing only
 - x4 more efficient OR x2 deeper
 - VLT follow-ups, tighter Fx/Fopt
- More straight UGO identification
Conclusions

• Multiwavelength coverage of UGO EGRET error boxes is a valid identification strategy.
• UGO identification is one of the major goals of next years' high energy astrophysics.