Strong gravitational lensing and the IMF of early-type galaxies

Talk @ EWASS 2015

Dominik Leier

Dipartimento di Fisica e Astronomia Universitá di Bologna

with

I. Ferreras (MSSL/UCL), P. Saha (UZH), S. Charlot (UPMC) G. Bruzual (UNAM), F. La Barbera (INAF)

European Research Council

Contents

Pipeline and Sample

modelling the light and mass of lenses

Constraining the stellar IMF by Lensing

how population synthesis & free-form models shed light on the IMF

Sanity Checks lensing mass and luminosity

Results

IMF shape, Baryonic Dominance & Normalization

The pipeline ...

Knowing the colour of a galaxy means knowing it's stellar mass.

Photometric modelling of HST follow-up observation of SLACS lenses (Galfit v3.0.4, Peng et al. '10)

Quality assessment via residual maps

→ enclosed surface brightness profile (errors incl. variations along contours & residuals)

Lens mass is reconstructed by free-form method (PixeLens, see Saha & Williams '01, Coles '08, Leier '09)

The pipeline ...

Knowing the colour of a galaxy means knowing it's stellar mass.

Photometric modelling of HST follow-up observation of SLACS lenses (Galfit v3.0.4, Peng et al. '10)

Quality assessment via residual maps

→ enclosed surface brightness profile (errors incl. variations along contours & residuals)

Lens mass is reconstructed by free-form method (PixeLens, see Saha & Williams '01, Coles '08, Leier '09)

The pipeline ...

Knowing the colour of a galaxy means knowing it's stellar mass.

Photometric modelling of HST follow-up observation of SLACS lenses (Galfit v3.0.4, Peng et al. '10)

Quality assessment via residual maps

→ enclosed surface brightness profile (errors incl. variations along contours & residuals)

Lens mass is reconstructed by free-form method (PixeLens, see Saha & Williams '01, Coles '08, Leier '09)

The pipeline ...

Knowing the colour of a galaxy means knowing it's stellar mass.

Photometric modelling of HST follow-up observation of SLACS lenses (Galfit v3.0.4, Peng et al. '10)

Quality assessment via residual maps

 \rightarrow enclosed surface brightness profile (errors incl. variations along contours & residuals)

Lens mass is reconstructed by free-form method (PixeLens, see Saha & Williams '01, Coles '08, Leier '09)

The pipeline ...

Knowing the colour of a galaxy means knowing it's stellar mass.

Photometric modelling of HST follow-up observation of SLACS lenses (Galfit v3.0.4, Peng et al. '10)

Quality assessment via residual maps

 \rightarrow enclosed surface brightness profile (errors incl. variations along contours & residuals)

Lens mass is reconstructed by free-form method (PixeLens, see Saha & Williams '01, Coles '08, Leier '09)

The stellar Initial Mass Function (bimodal or two power law)

$$\frac{dN}{d\log M} \propto \left\{ \begin{array}{ll} 0.4^{-\mu} & M/M_{\odot} < 0.2 \\ p(m) & 0.2 < M/M_{\odot} < 0.6 \\ M^{-\mu} & 0.6 < M/M_{\odot} \end{array} \right.$$

$$\wedge \qquad \frac{dN}{d\log M} \propto \begin{cases} M^{-\Gamma} & M/M_{\odot} < 1\\ M^{-1.35} & 1 < M/M_{\odot} \end{cases}$$

can be constrained by means of the total enclosed (lensing) mass-to-light ratio

 $\Upsilon_{tot}(< R) > \Upsilon_*(< R).$

*M*_{tot} ← *pixelated* lens mass-reconstruction (PixeLens, see Saha & Williams '01, Coles '08, Leier '09)

L ← HST follow-up on 19 SLACS lenses + photometric modelling (see Ferreras et al. '08, Leier et al. '11).

 $\begin{array}{l} \mbox{Population synthesis models} + \mbox{spectral fitting} \\ \mbox{to obtain the } M/L \ \mbox{ratios assuming} \end{array}$

$$F_{\lambda} = \int S_{\lambda}(\xi, t, Z) \times e^{-(t-t_0)/\tau} dt.$$

D. Leier, Universitá Bologna

The stellar Initial Mass Function (bimodal or two power law)

$$\frac{dN}{d\log M} \propto \left\{ \begin{array}{ll} 0.4^{-\mu} & M/M_{\odot} < 0.2 \\ p(m) & 0.2 < M/M_{\odot} < 0.6 \\ M^{-\mu} & 0.6 < M/M_{\odot} \end{array} \right.$$

$$\wedge \qquad \frac{dN}{d\log M} \propto \begin{cases} M^{-\Gamma} & M/M_{\odot} < 1\\ M^{-1.35} & 1 < M/M_{\odot} \end{cases}$$

can be constrained by means of the total enclosed (lensing) mass-to-light ratio

 $\Upsilon_{tot}(< R) > \Upsilon_*(< R).$

*M*_{tot} ← *pixelated* lens mass-reconstruction (PixeLens, see Saha & Williams '01, Coles '08, Leier '09)

L ← HST follow-up on 19 SLACS lenses + photometric modelling (see Ferreras et al. '08, Leier et al. '11).

 $\begin{array}{l} \mbox{Population synthesis models} + \mbox{spectral fitting} \\ \mbox{to obtain the } M/L \ \mbox{ratios assuming} \end{array}$

$$F_{\lambda} = \int S_{\lambda}(\xi, t, Z) \times e^{-(t-t_0)/\tau} dt.$$

D. Leier, Universitá Bologna

The stellar Initial Mass Function (bimodal or two power law)

$$\frac{dN}{d\log M} \propto \left\{ \begin{array}{ll} 0.4^{-\mu} & M/M_{\odot} < 0.2 \\ p(m) & 0.2 < M/M_{\odot} < 0.6 \\ M^{-\mu} & 0.6 < M/M_{\odot} \end{array} \right.$$

$$\wedge \qquad \frac{dN}{d\log M} \propto \begin{cases} M^{-\Gamma} & M/M_{\odot} < 1\\ M^{-1.35} & 1 < M/M_{\odot} \end{cases}$$

can be constrained by means of the total enclosed (lensing) mass-to-light ratio

 $\Upsilon_{tot}(< R) > \Upsilon_*(< R).$

*M*_{tot} ← *pixelated* lens mass-reconstruction (PixeLens, see Saha & Williams '01, Coles '08, Leier '09)

L ← HST follow-up on 19 SLACS lenses + photometric modelling (see Ferreras et al. '08, Leier et al. '11).

 $\begin{array}{l} \mbox{Population synthesis models} + \mbox{spectral fitting} \\ \mbox{to obtain the } M/L \ \mbox{ratios assuming} \end{array}$

$$F_{\lambda} = \int S_{\lambda}(\xi, t, Z) \times e^{-(t-t_0)/\tau} dt.$$

The stellar Initial Mass Function (bimodal or two power law)

$$\frac{dN}{d\log M} \propto \left\{ \begin{array}{ll} 0.4^{-\mu} & M/M_{\odot} < 0.2 \\ p(m) & 0.2 < M/M_{\odot} < 0.6 \\ M^{-\mu} & 0.6 < M/M_{\odot} \end{array} \right.$$

$$\wedge \qquad \frac{dN}{d\log M} \propto \begin{cases} M^{-\Gamma} & M/M_{\odot} < 1\\ M^{-1.35} & 1 < M/M_{\odot} \end{cases}$$

can be constrained by means of the total enclosed (lensing) mass-to-light ratio

 $\Upsilon_{tot}(< R) > \Upsilon_*(< R).$

*M*_{tot} ← *pixelated* lens mass-reconstruction (PixeLens, see Saha & Williams '01, Coles '08, Leier '09)

L ← HST follow-up on 19 SLACS lenses + photometric modelling (see Ferreras et al. '08, Leier et al. '11).

 $\begin{array}{l} \mbox{Population synthesis models} + \mbox{spectral fitting} \\ \mbox{to obtain the } M/L \ \mbox{ratios assuming} \end{array}$

$$F_{\lambda} = \int S_{\lambda}(\xi, t, Z) \times e^{-(t-t_0)/\tau} dt.$$

Sanity Checks

Now, how are we doing ...

Total enclosed mass: Free-form versus analytic modelling Small non-systematic offset of ~ 0.14 dex. Check-up with analytic modelling tools.

Small non-systematic offset of $\mathit{RMSD} \sim 0.15$.

Sanity Checks

Now, how are we doing ...

 \rightarrow Total enclosed mass: Free-form versus analytic modelling Small non-systematic offset of $\sim 0.14 \ dex.$ Check-up with analytic modelling tools.

uminosity:

Small non-systematic offset of $\mathit{RMSD} \sim 0.15$

Sanity Checks

Now, how are we doing ...

Results: constrained stellar IMF

bimodal $M^*(\mu)$ exhibits u-shape:

low- μ excess comes from high-mass stars for top-heavy IMF

high- μ excess comes from low-mass end of bottom-heavy IMF (stellar remnants)

Pros/Cons

bimodal $M^*(\mu)$ constrains bimodal μ relatively weekly but from both sides

Results: Constrained stellar IMF

2 power law $M^*(\Gamma)$ is increasing:

Note: $\boldsymbol{\Gamma}$ only regulates the low mass star contribution

low- Γ excess cannot occur: Salpeter slope is enforced for high stellar masses.

Pros/Cons

2 power law $M^*(\Gamma)$ sets a stronger upper limit to the low mass IMF slope

Results: Baryonic dominance

Question:

How much Dark Matter is there?

- SLACS lenses: $R_{Ein}/R_e \approx 0.7$ (versus ~ 2.3 for CASTLeS lenses) This indicates already that the region of interest is probably dominated by baryonic matter in the form of stars.
- If we knew the DM content exactly, we could constrain the IMF much better! Here's one approach:

EWASS '15

$$\alpha = (\textit{M}_{*}/\textit{L})/(\textit{M}_{*}/\textit{L})_{\textit{Kroupa}}$$

- M_*/L via IMF-sensitive spectral & t/Z-dependent features OR gravity sensitive absorption line features OR $M_{total} M_{DM}$, inferred from Lensing & DM simulations
- blind to IMF parameterisation (bimodal low & high- μ yield same α)

$$\alpha = (\textit{M}_{*}/\textit{L})/(\textit{M}_{*}/\textit{L})_{\textit{Kroupa}}$$

- M_*/L via IMF-sensitive spectral & t/Z-dependent features OR gravity sensitive absorption line features OR $M_{total} M_{DM}$, inferred from Lensing & DM simulations
- blind to IMF parameterisation (bimodal low & high- μ yield same α)

$$\alpha = (M_*/L)/(M_*/L)_{\rm Kroupa}$$

- M_*/L via IMF-sensitive spectral & t/Z-dependent features OR gravity sensitive absorption line features OR $M_{total} M_{DM}$, inferred from Lensing & DM simulations
- blind to IMF parameterisation (bimodal low & high- μ yield same α)

$$lpha = (M_*/L)/(M_*/L)_{Kroupa}$$

- M_*/L via IMF-sensitive spectral & t/Z-dependent features OR gravity sensitive absorption line features OR $M_{total} M_{DM}$, inferred from Lensing & DM simulations
- blind to IMF parameterisation (bimodal low & high- μ yield same α)

Conclusion

Take away message:

- We constrain the IMF using: Free-form lens models, dedicated SED catalogs, gravity sensitive absorption line features
- $\bullet~$ 2 Power Law parameterisation is stronger constrained by lensing: $\langle \Gamma \rangle \lesssim 1.6$
- Bimodal shape sets weaker constraints on the IMF: $1 \lesssim \langle \mu \rangle \lesssim 2.5$
- IMF shape is important and α_{MW} does not necessarily allow to differentiate
- There is in average 3-4 times more stellar mass than dark matter < *R_{Ein}*, given stellar-to-halo-mass relation is applicable.
- Constraints can be set on both the shape and the normalisation: High- σ ETGs are not necessarily heavier than low- σ ETGs!

Thank you!