Exploring the evolution of the stellar mass function in the redshift range z=0.5-3.5

Alice Mortlock Ross McLure Rebecca Bowler

Motivation

Huge amount of work in the literature, but still disagreement on the form of the MF

Often disagreements arise from:

Mortlock et al. 2015

- survey area
- depth
- fitting the form of the MF
- differences in galaxy selection

UltraVISTA DR2 data

CFHT/MegaCam Subaru/Suprime-Cam HST/ACS DR1 DR2 Bowler et al. 2014

Deep strips

Area ~0.4 deg²
K(AB)=24.5 (5σ 2")

Interstrip gaps

Area ~0.4 deg²
K(AB)=23.5 (5σ 2")

Deep 3.6 and 4.5µm

SPLASH (Capak)
SEDS (Ashby 2013)

Issues at the high mass end?

1) Completeness due to selection band

2) Eddington Bias

The IRAC selected MF in UVISTA Motivation

Various studies uncovering samples of massive galaxies at high-z detected at wavelengths redder than K.

e.g. Caputi (2011) Caputi (2012) Stefanon (2014)

The IRAC selected MF in UVISTA

A the second second

...maybe some massive objects at higher redshift?

Eddington Bias

A consequence of the errors on fluxes, and the fact there are many more faint objects compared to bright objects (Eddington 1913)

Eddington Bias: The intrinsic MF

- 1. Start with some evolving prescription for the MF. Create fake populations of 2. objects, inject them into images, recover them. **Construct the output MF from** your input population 4. Match the output MF to observed MF, this gives you the underlying intrinsic MF of
 - your observed MF

Eddington Bias: Change in M*

Eddington Bias: Preliminary results

Eddington bias is a strong function of redshift in our data set. The impact of Eddington bias on M* is negligible at low z but ~0.26 dex at z=3

Summary

- UltraVISTA gives us the power to explore the high mass end of the MF with high accuracy.
 - Our IRAC selected sample does not contribute strongly to the MF at z<3, therefore data at wavelengths bluer than IRAC affords us a complete view of the MF at high masses.
 - Using simulations to explore Eddington bias we find little impact at low redshift but find that it can alter M* by ~0.26 dex at z=3

