The role of environment in the evolution of massive galaxies

Anna Pasquali

Astronomisches Rechen-Institut Zentrum für Astronomie der Universität Heidelberg

Prelude

- Galaxy evolution is driven by stellar mass, M* (a proxy for internal secular evolution and AGN feedback), and by environment, which is parameterized with:
 - Iocal number density and/or Mh, the mass of the dark matter halo embedding a group/cluster of galaxies;
 - galaxy hierarchy, i.e. group/cluster galaxies are distinguished between one central (the most massive) galaxy and satellites.
- Centrals experience different environmental effects wrt satellites:

Mergers + ICM accretion =

Mass growth

Strangulation + Ram pressure + Tidal stripping + Harassment =

Quenching of starformation Mass loss

Environmental Effects in a Nutshell

- **Strangulation**: slow removal of the hot gas halo of a satellite (reservoir for future star formation) upon accretion onto a group/cluster (Larson et al. 1980).
- Ram-pressure stripping: fast removal of the diffuse interstellar medium (ionized and neutral) of a satellite due to its interaction with the intra-group or intra-cluster medium (ICM; Gunn & Gott 1972). The fraction of stripped gas increases with the ICM density (generally higher in the core of a galaxy group/cluster), the satellite orbital velocity (V²) and M_h of the host group/cluster (Bekki 2009, Kapferer et al. 2009).
- **Tidal stripping**: removal of stars and gas from a satellite as a result of its tidal interactions with the gravitational potential of its host group/cluster and/or of its central galaxy (Villalobos et al. 2012, Chang et al. 2013).
- Harassment: loss of gas and stars undergone by low surface brightness satellites during fast and close encounters with brighter cluster galaxies (Moore et al. 1996, 1998).

The "Delayed-Then-Rapid" Quenching Scenario

Proposed by Wetzel et al. (2013) in order to explain the observed properties of satellites:

- Low mass galaxies and those residing now in more massive environments were accreted earlier.
- Upon accretion satellites keep forming stars for 2 4 Gyr, this time scale being shorter for more massive galaxies, still independent of Mh. In this period satellites also are deprived of their hot gas halo (strangulation).
- Once quenching of star formation has started (via ram pressure), the e-folding time over which the star formation rate decreases is < 1 Gyr.</p>
- About 50% of low mass passive satellites (M* < 10¹⁰ M₀) in clusters were quenched in another smaller host halo (group) before infalling into the cluster. This is also known as group preprocessing.

Massive galaxies' demography

Working selection: $\log(M*/h^{-2} M_0) \ge 10.5$.

Data: DR7 group catalogue by Yang et al. (2005, 2007), based on a group-finder algorithm that makes use of the traditional FOF method and the conditional luminosity function. The latter assigns to a total luminosity (stellar mass) of a galaxy group a mass and virial radius of the dark matter halo associated with it. In these groups, galaxies are split between central and satellite galaxies.

Properties of Massive Satellites vs Environment

Fractions of passive satellites with log(SSFR/yr⁻¹) < -11:

between 80% and 100%, with little or no dependence on M_h . (Balogh et al. '04; Blanton et al. '05; van den Bosch et al. '08, Wetzel et al. '12)

Average, mass-weighted age of stellar populations:

old stars with age \approx 8 Gyr, independent of environment.

(Gallazzi et al. '05; Jimenez et al. '07; Bernardi '09; Pasquali et al. '10; Gallazzi et al. '15)

Average [α/Fe]:

clear dependence on M^* , but no significant changes as a function of M_h .

T(M/2) decreases by a factor of 2 at higher M*; at fixed M* the scatter in T due to environment is ~0.1 Gyr. (de la Rosa et al. '11; Gallazzi et al. '15)

Average stellar metallicity:

mild dependence on M_h for M* < 10.8 possibly due to tidal stripping. (Pasquali et al. '10; Gallazzi et al. '15)

Properties of Massive Centrals vs Environment

Bona-fide Early-Type Centrals (ETCs), when separated in M_h ($M_h < 12.5$: isolated, $M_h > 12.5$: in groups) show that:

ETCs in groups are younger than isolated ETCs by 1 Gyr.

ETCs in groups are metal-richer than isolated ETCs by 0.02 dex in [Z/H].

ETCs in groups have lower [α /Fe] than isolated ETCs by 0.025 dex.

ETCs in groups have a higher A_V than isolated ETCs by 0.035 mag.

These trends are independent of the galaxies velocity dispersion $\boldsymbol{\sigma}.$

La Barbera et al. (2014)

The star-formation history emerging from the ETCs stacked spectra indicates that:

The bulk of their M* formed at look-back times > 6 Gyr.

ETCs in groups formed their M* over a more extended time scale than isolated ETCs.

A different assembly time scale is also consistent with the observed difference in $[\alpha/Fe]$ between group/isolated ETCs.

Central ETGs in groups can grow in M* via gas accretion during interactions and mergers with gas-richer satellites.

La Barbera et al. (2014)

Sizes of early-type central galaxies:

Environment: clusters with $log(M_h/M_o) \ge 14$.

Sizes: Re from de Vaucouleur profiles or double Sersic profiles.

Early-type centrals are more extended than early-type satellites of the same M* or σ : size growth driven by minor mergers.

(Bernardi 2009; Hyde & Bernardi 2009; Hirschmann et al. 2015; Lauer et al. 2007; Liu et al. 2008; Naab et al. 2009; Nipoti et al. 2012; Oser et al. 2012; Trujillo et al. 2011)

Properties of the Whole Population of Massive Galaxies

Age and metallicity radial gradients in early-type galaxies (La Barbera et al. 2012):

Computed by comparing colour profiles with population synthesis models.

Environment: groups with $log(M_h/M_o) \sim 13.9$ and field.

AGE: group ETGs exhibit positive gradients, with their outskirts been older than their central regions; field ETGs have flatter or null gradients.

METALLICITY: gradients of group and field ETGs are negative. Gradients of group ETGs steepen in the galaxy outskirts.

MODELS: different population models change the strength of these gradients but not the general conclusions.

CAUSE: ETGs outskirts build up through mergers with low mass systems, old and metal poor.

(Greene et al. '13 and '15; Hirschmann et al. '15; Lackner et al. '12; Naab et al. '09; Oser et al. '12; Pastorello et al. '14)

Comparison with Simulations

Cosmological simulations of massive galaxies which feature major/minor mergers, metal cooling, SNII/I and AGB enrichment, galactic winds (Hirschmann et al. 2015):

- Simulated ages and metallicities are offset from observations, possibly because of the recipe for galactic winds and the fact that simulated galaxies are satellites.
- Simulated <gradient> in Z is in good agreement with observations; simulated <gradient> in Age is positive but shallower than observed.
- Both simulated <gradients> are driven by galaxies which have assembled most of their mass through minor mergers (up to 10, of mass ratio < 1:4) since z ~ 2.</p>

Massive Galaxies and Environment at High Reshifts

- The fraction of quenched massive satellites is > 60% up to z ~ 1 and increases with M* and slightly with Mh. (Balogh et al. 2011; Lin et al. 2014; McGee et al. 2011; Mok et al. 2014; Muzzin et al. 2012 & 2014; Poggianti et al. 2006; Vulcani et al. 2010; Wilman et al. 2005)
- At *z* > 1.5, our measurements are biased by cosmic variance and hampered by observations in the infrared; in a number of clusters, the fraction of massive star-forming satellites equals or is somewhat larger than the fraction of passive massive satellites.

(Hayashi et al. 2010; Strazzullo et al. 2013; Tran et al. 2010)

Up to z ~ 0.6, massive central galaxies in massive halos are more extended than satellites of the same M* or σ.
Between z ~ 0.6 and z ~ 0 these galaxies have increased their M* and R_e by a factor of 2 and 4, respectively, leaving their σ nearly unchanged. (Bernardi 2009; Bernardi et al. 2014; Lauer et al. 2007; Valentinuzzi et al. 2010; Vulcani et al. 2014; Zirm et al. 2012)

This size evolution is part of the more general size growth of massive and quiescent galaxies since z ~ 2. (Daddi et al. 2005; Ferreras et al. 2009; Trujillo et al. 2006; van Dokkum et al. 2008)

Are there enough satellites out there?

Cosmological simulations (i.e. Millenium I & II) and SAMs tend to overestimate the number of satellites, which depends on the adopted physics (i.e. SN/AGN feedback and galactic winds; Quilis & Trujillo '12; Hirschmann et al.' 15; Nipoti et al.'11 & '12; Oser et al. '12).

Summary

- The vast majority of massive satellites is passive and old; their observed properties show little dependence on environment, likely because these galaxies can quench their bulk star-formation activity via their secular evolution and/or AGN feedback.
- Massive (early-type) centrals residing in groups/clusters exhibit: 1) significantly larger R_e than satellites of the same M* (σ); 2) a prolonged mass assembly history than their peers in the field. Both properties may be explained with mass accretion via minor mergers.
- Massive galaxies show positive radial gradients in age and negative radial gradients in metallicity, which are consistent with the accretion of small, old and metal-poor satellites. These gradients steepen for massive galaxies in groups, because of a larger number of satellites and an enhanced merging activity?
- Are there enough satellites to explain the size growth of massive & quiescent galaxies via minor mergers since z ~ 2 as suggested by simulations? Observations say "possibly yes" at z < 1 but "likely no" at higher redshift.</p>
- Need for dedicated observations of environment at high redshift and for improved physics in simulations and SAMs.