

The simulation:

GAS + DM + AMR + STARS + CHEMISTRY + AGN + MHD

(Quilis, MNRAS, 2004)

Initial conditions:

- Λ CDM cosmology: $\Omega_{\rm m}$ = 0.25, Ω_{Λ} = 0.75, $\Omega_{\rm b}$ = 0.045, h = 0.73
- z = 50
- computational box: 44 Mpc
- 7 levels of refinement (spatial resolution 2.7 Kpc)
- coarse grid 128³ cells (level 0)
- DM particles 512³ (mass resolution 10⁸ M_☉)
- Sample: $M_{\star} > 10^{11} M_{\odot}$ at z=0, located in the highest resolution grid (resolution 2.7 kpc)
- 21 galaxies: 11 have undergone a significant merger during their life (MERGER galaxies), whereas 10 have experienced an almost quiet life (OULT galaxies)

(QUIET galaxies)

merger definition:

MASSIVE GALAXIES: gradients

Median 1-D profiles MERGER vs QUIET. Merger galaxies have:

- higher stellar mass and hence higher velocity dispersion at all radii
- lower Sersic indices (indicative of late-type morphology)
- Higher rotational velocity, mainly in the outer regions → fast rotators
- Younger ages and higher metallicities at all radii
- Steeper metallicity gradients

The merging history is a crucial factor in shaping the present-day structure of massive galaxies

Accretion history: density and luminosity profiles

In-situ stars: formed in the main progenitor

Ex-situ: accreted later-on to the main unit

- Both the MERGER galaxies and the QUIET ones have a significant contribution from accreted stars → QUIET galaxies formed by smooth accretion of small units
- In-situ component dominates in the very central region (r<R_e)
- Outskirts formed by accretion/merger
- Ex situ stars are less luminous.

Accretion history: star formation histories

- Accreted stars are older than in situ stars: on average ex situ ~3 Gyr older than in situ
- Star formation ceased 4 Gyrs ago in accreted population
- In situ star formation occurs at all times

Accretion history: metallicity distribution

- Mean metallicities of two populations are very similar
- Metallicities distributions are quite different:
 - In situ stars are skewed towards large metallitices, specially in galaxies that have suffered mergers
 - The accreted component spans a wide range of metallicities

Conclusions

- We have studied both the in situ and ex situ populations depending on the merging history.
- Merger galaxies have a higher fraction of accreted stars.
- The spatial distribution of in situ and ex situ populations is quite different in both merger and quite galaxies.
- In situ stars are always the dominant population in the inner parts, whereas ex situ stars overtake in the outermost parts.
- Merger galaxies present a slight excess of accreted stars in the central region associated to the mixing action of mergers.
- Accreted stars are always older and less metallic than the in situ stars.

THANKS!!

R, = 36kpc	R _v = <u>15kp</u> c	R,=15kpc	R. = 34kpc	<u>R- =</u> 11kpc	R.=14kpc	R. = 18kpc	<u>R_e=1</u> 1kpc	<u>Re</u> = 7kpc	μ_R
		1	1		della.				
		Sec. Of				S TO SE			18 -
<u>R. = 17kpc</u>	Rr = 27kpc	R. =11kpc	<u>R. –</u> 9kpc	R. = 10kpc	<u>R_</u> = 6kpc	R. = 16kpc	<u>R-</u> = Skpc	<u>R. =</u> 8kpc	
									19 -
					2		A STATE SERVICE		
K. = 18kpc	R. = 16kpc	R. = 17kpc	<u>R. = 9kpc</u>	<u>R.</u> – 8kpc	<u>R. =</u> 10kpc	R <u>I</u> 4kpc	R. = 10kpc	R. = 12kpc	20 -
			河 夏东	图形					
	- 4	The same	4-19-5						21 -
<u>R. =</u> 10kpc	R. = 11kpc	<u>R_s = 12kpc</u>	R _r = 8kpc	<u>R. = 20kpc</u>	<u>R. =</u> 8kpc	R. = Skpc	<u>R. = 1</u> 1kpc	<u>R. = 11kpc</u>	
						1			22 -
R. =10kpc	R _s = 9kpc	R- 13kpc	<i>R.</i> = 17kpc	R. = 14kpc	R = 7kpc	R. =13kpc	R. = 9kpc	R= 14kpc	
							100		23
						No. 10	20.00		
R. =19kpc_	R. = 20kpc	K. = 12kpc	<u>R. = 12kpc</u>	<u>K. = 12kpc</u>	R. = 14kpc	R. = 12kpc	<u>R-</u> = 7kpc	<u>R.</u> = 6kpc	24 -
	46								
							第	1000	25
R. = 13kpc	<u>R. = 1</u> 1kpc	<u>R. –</u> 10kpc	<u>R. = 10kpc</u>	<u>R. = 13kpc</u>	R. = 12kpc	R ₂ =6kpc	<u>R.</u> = 7kpc	<u>R. = 10kpc</u>	
									26
			(学院)		STATE OF THE PARTY	411			

M*/M halo study

