Stellar Population synthesis models from the optical to the infrared

Benny Röck, Alexandre Vazdekis, Reynier Peletier, Johan Knapen

IAC, La Laguna, Tenerife

June 23, 2015

Motivation for extending the models to the IR

- non-existence of reliable and accurate SSP-models in the wavelength range $2.5-5 \mu \mathrm{~m}$
- IR-wavelengths less affected by dust extinction than optical wavelengths
- good tracers of old stars dominating the baryonic mass in galaxies
- mid-IR-wavelengths very suitable to quantify the AGB-contribution
- poorly studied, many open questions concerning the emitted stellar light, absorption features...
- available Spitzer and X-Shooter observations of galaxies

Stellar population modelling

- general idea: populate isochrones of various ages and metallicities with stellar spectra according to the prescription given by a chosen IMF
- stars of a particular set of parameters Teff, $\log (\mathrm{g})$ and $[\mathrm{Fe} / \mathrm{H}]$ are reproduced by an interpolation based on an input stellar library of 180 stars
- stellar spectra are integrated along the isochrones in order to mimic different stellar populations
- transformation of theoretical parameters to observational plane is carried out based on empirical photometric libraries and relations
- summarized mathematically:

$$
\mathrm{S}_{\lambda}(\mathrm{t},[\mathrm{FeH}])=\int_{\mathrm{m}_{1}}^{\mathrm{m}_{\mathrm{t}}} \mathrm{~S}_{\lambda}(\mathrm{m}, \mathrm{t},[\mathrm{FeH}]) \cdot \mathrm{N}(\mathrm{IMF}, \mathrm{~m}, \mathrm{t}) \cdot \mathrm{F}_{\mathrm{K}}(\mathrm{~m}, \mathrm{t},[\mathrm{FeH}]) \mathrm{dm}
$$

Full characterization of the stellar library

- Determination of stellar atmospheric parameters
- Correcting gaps in the stellar spectra
- Checking the flux calibration
- Characterization of the resolution of the stellar spectra
- Checking for peculiar stars
- Extrapolation of all spectra to $5 \mu \mathrm{~m}$

Stellar atmospheric parameters of our 180 stars

satisfying coverage of the stellar atmospheric parameter space, sufficient for modelling (27 AGB stars, 5 carbon stars, 16 M dwarfs among others)

Combining the extended MILES (MIUSCAT) with the IRTF-based models

- very well feasible due to excellent flux calibration of the IRTF-library
- combined between 8950 and 9100 Angstrom

Main ingredients and parameter coverage

- prepared spectra from the extended MILES and from the IRTF library
- Kroupa-like, uni- and bimodal IMFs of various slopes between 0.3 and 3.3
- BaSTI- (Pietrinferni et al., 2004) and Padova-isochrones (Girardi et al, 2000)
- interpolator (Vazdekis et al., 2003) adopted to the IRTF-library
- metallicities: $[\mathrm{Fe} / \mathrm{H}]=-0.35,-0.25,0.06,0.15(\mathrm{BaSTI})$, $[\mathrm{Fe} / \mathrm{H}]=-0.40,0,0.22$ (Padova)
- ages: $>1 \mathrm{Gyr}$

Reproducing the NIR colours of early-type galaxies (Frogel et al., 1978)

- colours of our models coincide with the mean colours of the observed sample
- colours hampered by age-metallicity degeneracy

Comparison to optical-NIR colours of globular clusters in NGC 4472, NGC 4594 and NGC 5813

- combination of $\mathrm{V}-\mathrm{K}$ and V - I breaks in part age-metallicity degeneracy
- models fit observed GCs

Behaviour of the Spitzer [3.6-4.5]-colour as a function of age and metallicity

- weak dependence on age and metallicity, for ages <2 Gyr enhanced AGB-star contribution
- solar metallicities result in slightly bluer colours than subsolar ones due to the prominent CO absorption band in the [4.5] $\mu \mathrm{m}$ band

Comparison to models from the literature: ([3.6] - [4.5])

our models coincide well with the ones of Marigo et al.(2008) and the ones of Bressan et al. (2012)

Comparison to nearby elliptical and lenticular galaxies from the SAURON-survey

- good agreement between our models and the oldest, most massive, metallic and single-burst like objects
- unable to reproduce the redder colours of younger, lower-mass, star-forming galaxies

Mass-to-light (M/L) ratios measured in the $3.6 \mu \mathrm{~m}$-band

- M/L-ratios less dependent on age and $[\mathrm{Fe} / \mathrm{H}]$ than in the Optical
- parameter-independent $M / L_{3.6}=0.6$ as suggested by Meidt et al. (2014) equal to the mean value from our models
- large differences between the M/L-ratios depending on the used IMF

Studied indices in the K-band

- $\mathrm{Mg} \operatorname{I}$ and Fe-lines too weak in most observed galaxies
- further indices in H - (and J -) band

Na I at $2.21 \mu \mathrm{~m}$

- models are unable to fit most of the observed early-type galaxies
- same problem observed for the NaD in the Optical (see Yi et al., 2014)

Ca I at $2.26 \mu \mathrm{~m}$ versus Na I

- neither an enhanced contribution of AGB stars nor a more bottom-heavy IMF improve the situation
- possible explanation: supersolar, enhanced $[\mathrm{Na} / \mathrm{Fe}]$

First CO bandhead at $2.29 \mu \mathrm{~m}$

- abundance of CO as compared to Fe higher in field than in Fornax galaxies
- an enhanced contribution of carbon and/or AGB stars to our models could reproduce better the observed CO
- other explanation: significantly shorter star formation timescales in denser environments, compare to Carretero et al., 2004

Ca I at $2.26 \mu \mathrm{~m}$

Conclusions

- first models available between 2.5 and $5 \mu \mathrm{~m}$ based on empirical stellar spectra enabling also study of spectral features
- problem due to CO-absorption in the $4.5 \mu \mathrm{~m}$ band solved, models behave "as they should do"
- comparisons to observations remain difficult, limited coverage in parameter space...
- understanding and reproducing the behaviour of the NIR line strength indices remains a challenge - work in progress

