

Co-funded by the European Union via FP7 Career Integration Grant

SteMaGE (HOW) DO WE UNDERSTAND GALAXY STELLAR MASSES? RESULTS FROM A SPATIALLY RESOLVED SPECTROPHOTOMETRIC ANALYSIS OF THE CALIFA SAMPLE

Stefano Zibetti (INAF-Osservatorio Astrofisico di Arcetri)

in collaboration with Anna Gallazzi, Stéphane Charlot, Elena Tundo the CALIFA Collaboration

> Symposium S3 Deconstructing Massive Galaxy Formation 22-24 June 2015

MOTIVATION

- Stellar mass is a key property/driver of galaxy evolution
- Need to measure it as accurately as possible:
 - to measure its build-up, distribution in galaxies and in the intergalactic space, over the cosmic time
 - to understand scaling relations and their evolution
 - to quantify dynamical effects inside galaxies

Accuracy at 10% level is desirable: is it actually attainable?

M* FROM STELLAR POPULATION ANALYSIS: FOCUS PROBLEMS (THERE ARE MANY OTHERS!)

- Light is not a linear tracer of stellar mass
- Stellar mass can be reliably obtained from light (VIS-NIR)
 ONLY IF we can constrain to some level:
 - the star-formation and chemical enrichment history of a composite stellar population (see e.g. Gallazzi & Bell, 2009)
 - the properties of dust and the relative distribution of dust and stars
- Galaxies are (often) very inhomogeneous: need to properly weigh different regions (see e.g. Zibetti, Charlot & Rix, 2009 ZCR09)

M/L variations up to I dex!

OBJECTIVES

- Create a benchmark of optimally measured stellar masses on a sample of galaxies that offers:
 - good quality optical spectroscopy to nail down SFH and metallicity
 - multi-band imaging, to constrain dust attenuation
 - spatial resolution (scales ~1 kpc) not to miss dim components
- I. Calibrate "cheaper" estimators (e.g. color-M/L relations)
- II. Quantify biases arising from:
 - lack of complete information (e.g. no spectroscopy available)
 - Iack of spatial resolution (check results from ZCR09)/ limited spatial sampling
 - assumptions in the models (chiefly SF and ChEn Histories, dust)
- Note: Use of resolved regions allows us to test more "extreme" conditions than galaxies overall

EXPERIMENTAL SETUP

0.6

(M_o Gyr⁻¹)

0.2

SFR

- Dataset: CALIFA (DR2, Garcia Benito, SZ, Sanchez +2015) + SDSS: 200 galaxies, all morphologies, ~500,000 spaxels
- Models: *new* Stellar Popopulation Synthesis libraries
 - BC03 SSPs, Chabrier IMF
 - SFH: á la Sandage (1986, Gavazzi et al. 2002), variable age, variable tau, bursts
 - Generalised leaking box model for metal enrichment history (adapted from Erb 2006)
 - 2-component dust á la Charlot & Fall (2000)
 - library #500,000

METHOD

- CALIFA-SDSS match: resample & PSF match
- Adaptive smoothing for optimal SNR>20 [10]/pix: azmooth3C
- Stellar continuum-nebular line decoupling (customized GANDALF+pPXF) spaxel by spaxel
- Spaxel-by-spaxel <u>consistently</u> measure:
 - 5 stellar absorption indices (D4000n, Hβ, Hγ+Hδ, [Mg₂Fe], [MgFe]' as in Gallazzi et al. 2005)

AND

- 5 broadband photometric fluxes (SDSS ugriz)
- Bayesian parameter estimation: compare observables with each model ⇒ likelihood function
 - \Rightarrow posterior Probability Distribution Function
 - \Rightarrow marginalisation
 - \Rightarrow Median-likelihood M*

DOES IT WORK WELL?

NGC1056: one of the most difficult cases: distinct SPs, heavy dust

More than words, one example: dust lanes properly "corrected", smooth mass distribution

COLOR-M/L RELATIONS

- Cheapest M* estimator
- Origin: at fixed mass, what makes the stellar light dimmer, it makes it redder as well (age, Z, dust, <u>nearly</u> degenerate)

COLOR-M/L RELATIONS

- Cheapest M* estimator
- Origin: at fixed mass, what makes the stellar light dimmer, it makes it redder as well (age, Z, dust, <u>nearly</u> degenerate)

COLOR-M/L: CALIBRATION

 Importance of calibrating model libraries against data (see also Taylor+II)

Stefano Zibetti - EWASS 2015 - S3

CMLR: ORIGIN OF SCATTER AND BIAS

- Age, Z and dust are not perfectly degenerate!
- Blue colors: mainly metallicity
- Red colors: mainly dust
- Age contributes at blue and intermediate colors

RESOLUTION EFFECTS

Is this due to different CMLR for regions and galaxies or to resolution effects?

RESOLUTION EFFECTS

Same method (full specphoto) for spaxels and integrated light: bias still there! Stronger for less homogeneous galaxies

RESOLUTION EFFECTS

Same method (full specphoto) for spaxels and integrated light: bias still there! Stronger for less homogeneous galaxies

WHY RESOLUTION EFFECTS?

DO WE CARE ABOUT RESOLUTION EFFECTS?

 Roughly 10-15% of the Universe's stellar mass budget (based on uncorrected CALIFA DR2 sample) is LOST due to resolution effects

REALITY IS TOUGH...

- Large surveys (e.g. SDSS) provide complete (possibly resolved) information only in broadbands
- Spectroscopy is available only as as fibre-aperture integrated spectra, with significant light-loss
- Better to use
 - Colors (or broadband SED fitting) w/out light-loss

OR

spectrophotometry w/ light-loss?

CMLRVS APERTURE EFFECTS

Spectrophotometry in simulated SDSS-like apertures (including seeing) at different z based on low-z CALIFA observations

BUT... IF WE CHANGE OUR ASSUMPTIONS??

- SFH:
 - exponential vs delayed (Sandage)?
 - importance/distribution of bursts
- Chemical enrichment history
- Treatment of dust (multi-components, effective attenuation curves as a function of optical depth [Chevallard+13])
- Calibrators
- Systematics >>10% to be understood!

"Accuracy at 10% level is desirable: is it actually attainable?" Very tough!

Stay tuned for further results from the SteMaGE project!