Kinematic, Size & Mass Evolution of Field and Cluster Spiral Galaxies

Size evolution based on Tully-Fisher analysis out to z=1.4

University of Vienna

Bodo Ziegler Asmus Böhm (U Innsbruck) Ulrike Kuchner Nadja Lampichler Christian Maier Jose Perez Miguel Verdugo

Department for Astrophysics

XMM 2235 cluster z=1.4

Local Tully-Fisher Relation

v_{max} [≙] proxy for total mass including Dark Matter

Rotation curves at high redshift

Even at *z*=1 smooth symmetric rotation curves exist with shapes similar to local RCs → very massive spirals 8Gyr ago

Böhm & Ziegler 2007

Tully-Fisher Relation out to *z***=1**

Sample: **137** FDF & WHDF galaxies with V_{max} from regular, smooth RCs with flat part probed: $0.05 < z < 0.97, \langle z \rangle = 0.45$ 0.6 Gyr < t_{lb} < 7.6 Gyr, $\langle t_{\mu} \rangle$ = 4.5 Gyr

Böhm & Ziegler 2015 in prep

Tully-Fisher Relation out to *z***=1**

Distant sample: TF scatter σ_{TF} = 1.15 mag (~2x local value) Average brightening ΔM_B = -0.40 mag by z≈0.5

slope: full hi-z: -7.16^{+0.71}-0-53 local: -7.79

Böhm & Ziegler 2015

Tully-Fisher Relation out to *z***=1**

Increase Sample: 25 zCOSMOS galaxies (Master thesis of Nadja Lampichler supervised by Christian Maier)

Tully-Fisher Relation in *Clusters* out to *z*=1.4

Sample: 12 members A2163 z=0.2 (Master thesis of Veronica Menacho supervised by Miguel Verdugo) 2 member XMM2235 z=1.4 (PhD thesis project Jose Manuel Perez)

Evolution of Blue TFR out to z=1

Brightening: ~1.1Bmag at z=1 for given $V_{max} \rightarrow younger$ stellar populations in accordance with model predictions

Velocity-Size Relation out to *z***=1**

Velocity-Size Relation out to *z*=1

Increase Sample: zCOSMOS galaxies (Master thesis of Nadja Lampichler supervised by Christian Maier)

Velocity-Size Relation out to *z***=***1.4*

<u>Sample:</u>
12 members A2163 z=0.2
(Miguel Verdugo)
2member XMM2235 z=1.4
(PhD thesis project
Jose Manuel Perez)

Evolution of VSR out to z=1

Disk sizes at given V_{max} decrease towards higher redshifts (smaller by ~60% at z=1)

in accordance with model predictions

Böhm & Ziegler 2015

Evolution of stellar mass fraction

CALIFA team M. Lyubenova G. van de Ven J. Falcon Barroso

Large variation (mass-dependent?) due to differences in SF efficiency, gas fraction, cosmic flows?

Evolution of stellar mass fraction

Median values in 3 redshift bins hardly change

Evolution of stellar mass fraction

CALIFA team M. Lyubenova G. van de Ven J. Falcon Barroso

Cluster galaxies at z=0.2 already reached local fraction 3 Gyrs ago

Mass – Size in Field *z~0.5*

Halo Mass

Stellar Mass

Mass – Size in Cluster z~0.5

Ulrike Kuchner: Poster S3.22

Kuchner et al. 2015

Disks vs Spheroids (Sersic)

Star forming vs Quiescent

Disk sizes in cluster environment smaller than in the field

Morpology - Density in Phase Space at z~0.5 out to 3R_{vir}

Spheroids

Summary

- Weak increase of luminosity with z for given total mass
 1.1 Bmag at z=1
- Scatter at z~0.5 twice local scatter
- Weak decrease of stellar size with z for given total mass
 60% smaller at z=1
- Cluster galaxies smaller in cluster environments
- Most cluster members have distorted rotation curves
- Galaxies in early stage of cluster assembly more luminous and smaller (?)