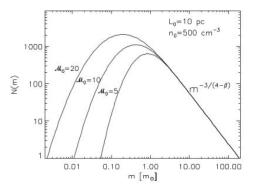

New insights into the non-universality of the IMF The influence of supersonic turbulence

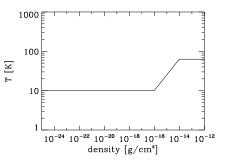
C. Bertelli Motta, P. C. Clark, S. C. O. Glover, A. Pasquali & R. S. Klessen University of Heidelberg EWASS - Turku, July 12, 2013



Clio Bertelli Motta

New insights into the non-universality of the IMF

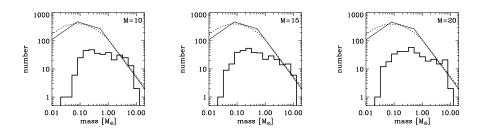
Motivation


- Growing evidence of non-universal IMF
- Studies about the dependence of the IMF on the turbulent Mach number (Padoan&Nordlund 2002, Hennelbelle&Chabrier 2008)
- Expectation: shift of the peak towards lower masses for increasing Mach number

(Padoan&Nordlund 2002)

Simulations

- SPH code Gadget 2
- Periodic box
- *L* = 10pc
- $M_* = 5750 M_{\odot}$
- $ho \sim 4 \cdot 10^{-22} \mathrm{g/cm}^3$
- $\sim 2 \cdot 10^7$ SPH particles
- metallicity $Z \sim Z_{\odot}$
- Polytropic equation of state



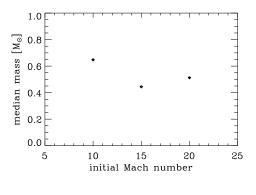
Decaying turbulence

- Interpolate initial turbulence field with particle grid
- *M* = 10, *M* = 15, *M* = 20
- Run stops when approximately 10% of the total mass of the cloud has been accreted into stars

Conclusions

Resulting IMF

dotted line: Chabrier 2003

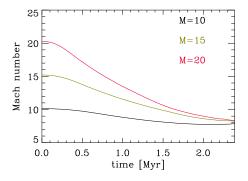

solid line: Kroupa 2001

(Bertelli Motta et al. in prep.)

Conclusions

Mach number dependence

 No observable dependence of the characteristic mass on the initial Mach number



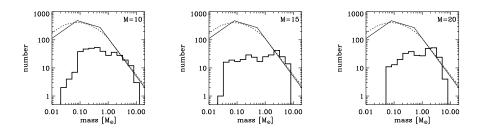
(Bertelli Motta et al. in prep.)

Conclusions

Decaying turbulence

• When the first stars form (at $\sim 1.5 \cdot 10^{6}$ yr) the Mach number has decreased to similar values for all the runs

(Bertelli Motta et al. in prep.)


- Turbulence continuously driven during the run
- Kinetic energy decay (Mac Low 1999):

$$\dot{E}_{kin} = -\eta_v m k v_{rms}^3$$

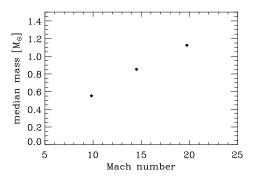
 $\eta_{\rm v}=0.21/\pi$

- m: mass of the cloud
- k: driving wavenumber
- v_{rms}: root mean square velocity of the gas

Resulting IMF

dotted line: Chabrier 2003

solid line: Kroupa 2001

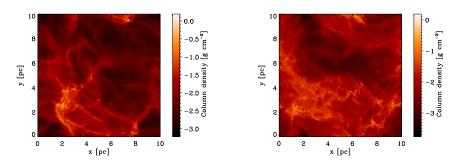

(Bertelli Motta et al. in prep.)

New insights into the non-universality of the IMF

Conclusions

Mach number dependence

- For increasing Mach number the peak of the IMF shifts towards higher masses
- Result against the expectations


(Bertelli Motta et al. in prep.)

Introduction	Decaying turbulence	Driven turbulence	Conclusions
Cloud structure			

• Strongly supersonic turbulence prevents the formation of stellar clusters (birth environment of low-mass stars, Bonnell et al. 2008)

 \Longrightarrow Few stars form and continue to accrete

M = 10

Clio Bertelli Motta

New insights into the non-universality of the IMF

M=20

Conclusions

• A dependence of the IMF on the turbulent Mach number can only be achieved by continuously driven turbulence

• The IMF becomes top-heavy for increasing Mach number