Constraints on the stellar IMF of early-type galaxies from a variety of spectral features

F. La Barbera⁽¹⁾; I. Ferreras⁽²⁾; A. Vazdekis⁽³⁾; I.G. de la Rosa⁽³⁾; R.R. de Carvalho⁽⁴⁾; M. Trevisan⁽⁴⁾; J. Falcón-Barroso⁽³⁾; E. Ricciardelli⁽⁵⁾

⁽¹⁾**INAF-OAC, Naples, Italy;** ⁽²⁾UCL-MSSL, London, UK; ⁽³⁾IAC, Tenerife, Spain; ⁽⁴⁾INPE-DAS, Sao Paulo, Brazil; ⁽⁵⁾DAA-Universitat de Valencia, Spain

The stellar IMF

It is a crucial ingredient of any theory of star formation, sets the massscale of galaxies, controls the intensity of stellar feedback processes, drives chemical enrichment patterns of the ISM

Gravity-sensitive features

Early studies plagued by small sample sizes, low S/N and R, uncertain SP models (Spinrad'62; Cohen'78; Faber&French'80; Carter+'86; Hardy&Couture'88; Delisle&Hardy'92)

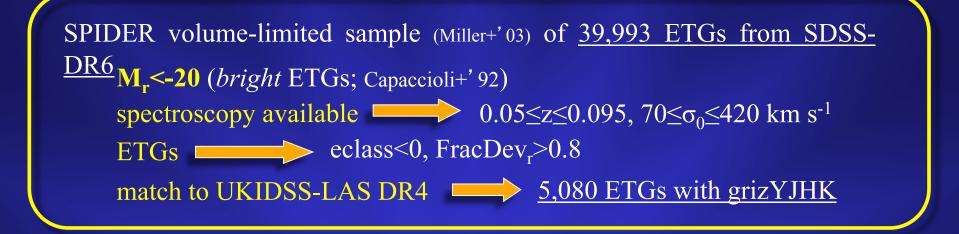
0.8

Na8190 [Å]

Trend towards a bottom-heavier, than MW, IMF in massive galaxies (Cenarro+'03; van Dokkum&Conroy'10,'11; Conroy&van Dokkum'12a,b)

Trend is in place for the whole population of ETGs (Ferreras+'13; La Barbera+'13; Spiniello+'13)

Abundance patterns vs. IMF degeneracy (Spiniello+'12)


 \implies Stacked spectra (σ_0) – spectral features

\Rightarrow [α /Fe] stacks at fixed σ_0

Fitting age-, metallicity-, IMF-sensitive features

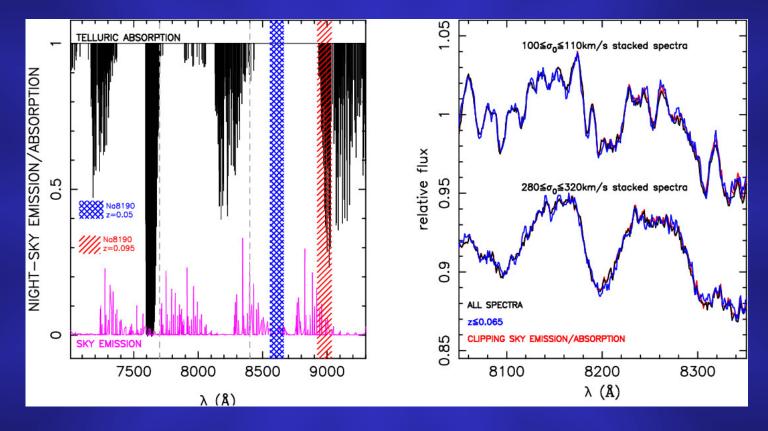
\implies Constraints to M/L' s and mass fractions

Sample selection

100≤ σ_0 ≤320km/s (18 bins, each 10km/s width, but the two at highest σ_0 , i.e. 260–280 and 280–320 km/s, respectively)

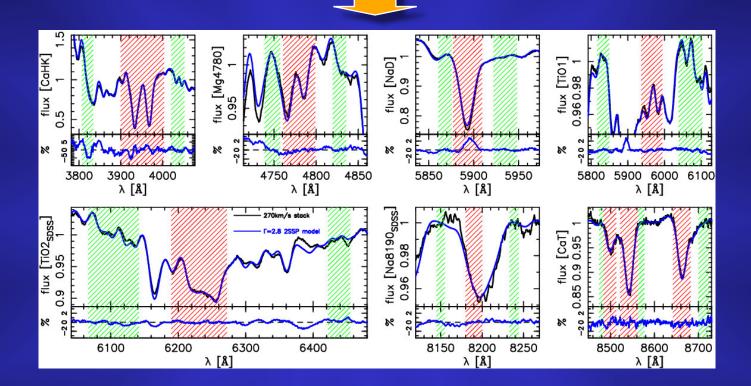
 \rightarrow low internal reddening, E(B-V)<0.1 (estimated from spectral fitting)

> excluding spectra in the lowest quartile of the S/N distribution


24,781 ETGs (Ferreras+'13; La Barbera+'13) First time the IMF trend has been analyzed for the whole population of ETGs with a variety of features

Stacking SDSS spectra

we median-combine spectra in each σ_0 bin, excluding pixels with flags on.


stacked spectra have <u>high S/N</u> (from 100 to 2000, depending on σ_0 and λ)

extensive tests show that sky contamination does not affect at all our results.

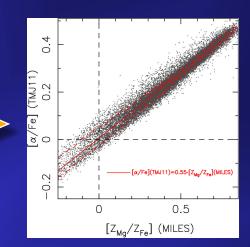
Selection of spectral features

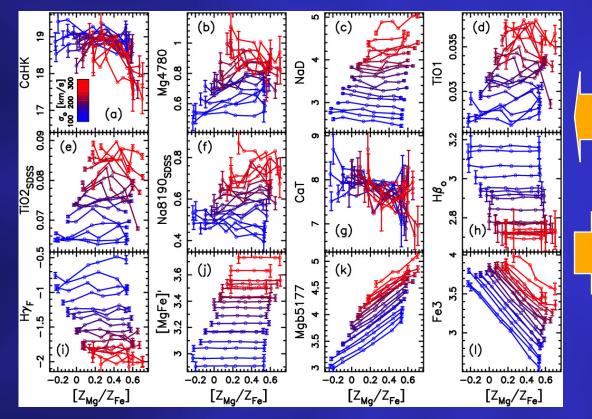
IMF-sensitive features: Mg4780 (Serven+'05), TiO1 (Trager+'98), TiO2_{SDSS} (Trager+'98 modified), NaI8190_{SDSS} (Vazdekis+'12 modified), CaT (Cenarro+'01) abundance-sensitive features (leading elements): CaHK (Serven+'05), NaD (Trager+'98)

> age+metallicity indicators: $H\beta_0$ (Cervantes & Vazdekis '09), $H\gamma_F$, [MgFe]'

 \implies Stacked spectra (σ_0) – spectral features

\implies [α /Fe] stacks at fixed σ_0

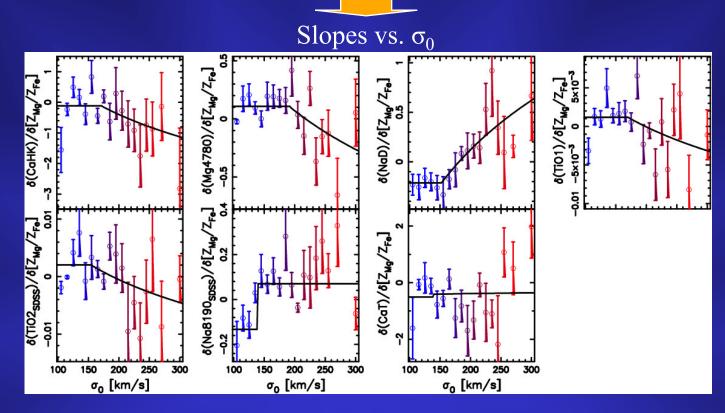

Fitting age-, metallicity-, IMF-sensitive features


\implies Constraints to M/L' s and mass fractions

Spectral indices vs. [α /Fe], at fixed σ_0

we measure the difference of Mgb and Fe3 metallicities (with MILES SSPs), at fixed age (H β_0): [Z_{Mg}/Z_{Fe}].

The $[Z_{Mg}/Z_{Fe}]$ shows a tight correlation with $[\alpha/Fe]$ estimated with Thomas+'11 models.


Line strengths of $[Z_{Mg}/Z_{Fe}]$ -binned spectra at fixed σ_0 (after removing Age and Z variations among bins).

Gravity-sensitive features exhibit only a mild variation with $[\alpha/Fe]$

Sensitivity of line indices to $[\alpha/Fe]$

For each σ_0 bin, we derive line strength vs. $[Z_{Mg}/Z_{Fe}]$ slopes with linear fits.

 \implies the $[Z_{Mg}/Z_{Fe}]$ slopes depend on $\sigma_0 \implies$

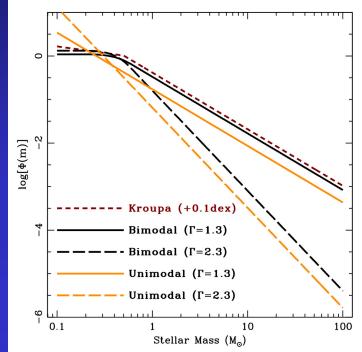
different enrichment patterns of highrelative to low-mass ETGs

"empirical" corrections of observed line strengths to solar scale, i.e. $[Z_{Mg}/Z_{Fe}]=0$ Crucial!! since predictions of line strength sesntivities to $[Z_{Mg}/Z_{Fe}]$ vary dramatically among models (Coelho+'07, Cervantes+'07, Thomas+'11, CvD12).

 \implies Stacked spectra (σ_0) – spectral features

\Rightarrow [α /Fe] stacks at fixed σ_0

Fitting age-, metallicity-, IMF-sensitive features

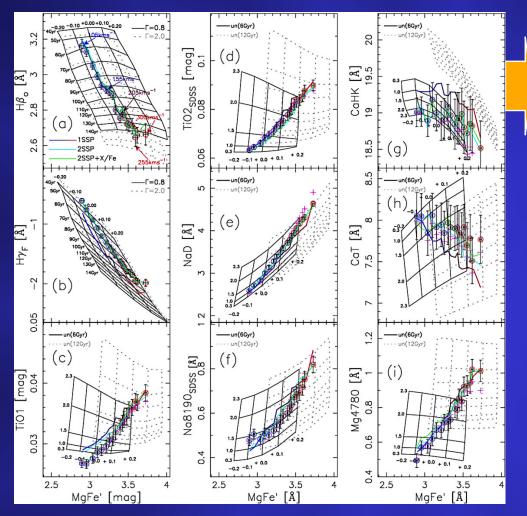

\implies Constraints to M/L' s and mass fractions

Fitting approaches

$$\chi^{2} \left[\Gamma; p_{j} \right] = \sum_{indices} \frac{\left(I_{corr} - I_{mod} \right)^{2}}{\sigma^{2} + \left(s_{corr} \right)^{2}}$$

 I_{mod} computed from MILES (nearly solar-scale) extended (MIUSCAT) SSPs (Vazdekis+'12), with unimodal (single power-law) IMF (Salpeter: Γ =1.35)

> **bimodal** (low-mass tapered) IMF (Vazkedis+' 96; Kroupa IMF: Γ=1.3)



 $1SSP: p_{j}=\{Age,[Z/H]\}$ $2SSP: p_{j}=\{Age_{1},[Z/H]_{1},Age_{2},[Z/H]_{2}\}$ $2SSP+X/Fe: p_{j}=\{Age_{1},[Z/H]_{1},Age_{2},[Z/H]_{2}, [Ca/Fe], [Na/Fe], [Ti/Fe]\}$ with [X/Fe] estimated from CvD12 models

hybrid approach (Ferreras+'13) where constraints from spectral fitting and line strengths are combined into a single PDF (exploring a wide set of SFHs)

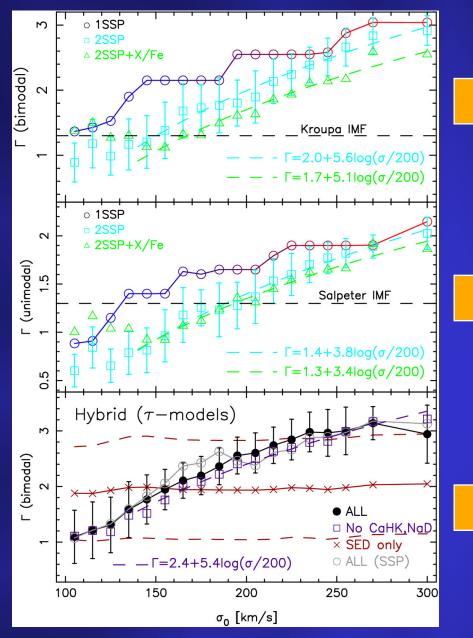
Fitting results – observed vs. model indices

index-index diagrams – data vs. best-fit models (observed/model indices corrected to 200km/s resolution)

<u>All indices</u> are well described by a simultaneous trend of age, metallicity, and IMF slope, to increase with σ_0 .

Fit quality improves significantly for 2(wrt 1)SSP models, while the role of "residual" X/Fe is marginal.

Unimodal and bimodal models cannot be singled out from indices, as both models fit data equally well.

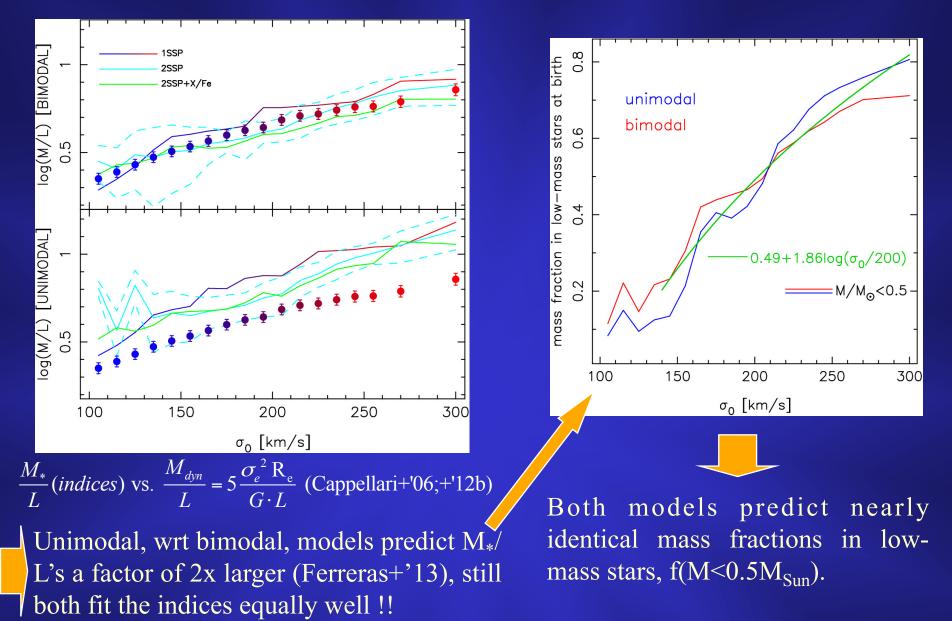

\implies Stacked spectra (σ_0) – spectral features

\Rightarrow [α /Fe] stacks at fixed σ_0

Fitting age-, metallicity-, IMF-sensitive features

Constraints to M/L' s and mass fractions

IMF slope vs. σ_0



At low σ (\leq 150km/s), the slope is consistent with a Kroupa-like IMF.

The slope exceeds the Salpeter value at ~ 200 km/s, becoming significantly bottom-heavy at high σ .

Slopes among different methods are consistent, but significant offsets exist (e.g. 1SSP wrt 2SSP+X/Fe)

Constraining M/L's?

Summary

Significant steepening of IMF slope with σ for the average population of ETGs. After the "empirical" correction to solar scale, all selected indices can be well described by an increase of age, metallicity, **and** IMF slope with σ .

It's σ_0 , not [α /Fe], the main driver of the trend.

Unimodal and bimodal models cannot be singled out, implying that M/L's are poorly constrained with indices alone.

In contrast, the fraction in low-mass ($<0.5M_{Sun}$) stars at birth in the IMF is robustly constrained, varying from 20% at σ ~100km/s, to 70% at σ ~300km/s.