

Strong lensing & Dynamics + Stellar population Constraining the Initial Mass Function and its lower cutoff mass

Chiara Spiniello Kapteyn Astronomical Institut University of Groningen (NL M. Barnabè, L.V.E. Koopmans, S.C. Trager, T.Treu, O.Czoske

Kapteyn Astronomical Institute **University of Groningen (NL)**

C.Spiniello

Spiniello et al. 2011

THE X-SHOOTER LENS SURVEY SCIENCE GOALS

WHAT?

- ETGs z~[0.1-0.4], σ* > 250 km/s
- Strong gravitational lensing+ dynamics (CAULDRON)
 + spatially resolved kinematics (XSH)
- Stellar population analysis (SSP modelling, line-strengths)

SCIENTIFIC GOALS:

- Disentangle stellar and dark-matter content
- Mass distrubution as function of galaxy mass and redshift
- Slope and <u>lower cutoff mass</u> of the Initial Mass Function (IMF) directly from spectra

Barnabè et al. 2012

C.Spiniello

THE METHOD

Barnabè et al. 2012

We infer stellar masses from two independent methods:

- I. Joint self-consistent lensing
 + dynamics analysis *Barnabè et al. 2012* Tracing the mass
- 2. Spectroscopic Simple
 Stellar Population study
 Spiniello et al. 2013
 Tracing the light

ENS

Spiniello et al. 2011

C.Spiniello

DARK MATTER : Axisimmetric generalized NFW profile

$$\rho_{\rm DM}(m) = \frac{\delta_c \,\rho_{\rm crit}}{\int \left(\frac{\delta_c \,\rho_{\rm crit}}{m/r_{\rm s}}\right)^{3-\gamma}}$$

$$\rho_{\rm DM}(m) = \frac{\delta_c \,\rho_{\rm crit}}{(m/r_{\rm s})^{\gamma} (1+m/r_{\rm s})^{3-\gamma}} \delta_c = \frac{200}{3} \frac{c^3}{\zeta(c,\gamma,1)}$$
• Free pars
ratio $\mathbf{q}_{\rm h}$, $\epsilon m^2 \equiv R^2 + \frac{z^2}{q_{\rm h}^2} \mathbf{c}_{-2} \delta_c = \frac{200}{3} \frac{c^3}{\zeta(c,\gamma,1)}$ e-dimensional axial

<u>LUMINOUS MATTER</u> : Decompose and de-project the galaxy high-res image in K-band using the *multi-Gaussian expansion (MGE) technique* (by Emsellem et al. 99, Cappellari 2002)

- Luminous mass distribution is self-gravitating, not just a tracer
- Free parameter [#5]: baryonic mass M_{bar}

We Measure <u>indices</u>:

that are more or less sensitive to different stellar population parameters (age, α /Fe, gravity, effective Temperature of RGB)

1. in the <u>XLENS</u> Galaxy Spectra

Current sample:12 systems $z\sim[0.1-0.5]$, $\sigma * > 250$ km/s Pilot program : the most massive and the least massive XLENS galaxies

2a. in single spectra from the <u>MILES</u> Stellar Library

995 stars spectra ,Wavelegth Range: 3525-7500ÅResolution: 2.50Å (FWHM)

Sánchez-Blázquez, et al 2006

Searching for (new) M-dwarfs indicators in the optical

Searching for indicators that :

- are strong in COOL STARS
- are GRAVITY-SENSITIVE
- do not depend strongly on metallicity and age (at least for population older than 7Gyr)

We Measure <u>indices</u>:

that are more or less sensitive to different stellar population parameters (age, α /Fe, gravity, effective Temperature of RGB)

1. in the <u>XLENS</u> Galaxy Spectra

Current sample:12 systems z~[0.1-0.5], $\sigma * > 250$ km/s Pilot program : the most massive and the least massive XLENS galaxies

2b. in the <u>CvD+12</u> Simple Stellar Population Models

Ages: $\{3-13.5\}$ Gyr, [α /Fe]: $\{-0.2 - 0.4\}$, IMF slopes: $\{1.8 - 3.5\}$ (Salp=2.35)

C.Spiniello

C.Spiniello

 $\left[\alpha/\text{Fe}\right]$ +0.0+0.2 +0.3+0.4

Spiniello et al. 2013

EWASS2013 - SpS12

EWASS2013 - SpS12

EWASS2013 - SpS12

EWASS2013 - SpS12

We measure EWs of several indices : Hβ, Mgb, Fe5270, Fe5335, bTiO, aTiO, TiO1, TiO2, CaH1,CaH2, (and NaD)

We compare each galaxy spectrum with grids of SSPs models 8 log(t){0.5 - 1.15Gyr} × 13 [α/Fe]{-0.2,+0.4} × 18 IMF{1.8,3.5} × 9 Teff,RGB {-200K, 200K}

Probability density function (PDF) via the Likelihood function :

$$L \propto \exp(-\chi^2/2)$$

$$\chi_n^2 = \sum_{ind=1}^{10} \chi_{ind,n}^2 = \sum_{ind=1}^{10} \frac{(EW_{ind} - EW_n)^2}{\sigma_{EW_{ind}}^2}$$

FIRST RESULTS:

Barnabè, Spiniello et al. 2013

The least massive:

SDSSJ0936

 $5 \Pi_{rm}/q$

σ~330km/s

The most massive:

SUSS JU936+0915

LENS

LENS

SDSSJ0912

STELLAR KINEMATICS

z _{lens}	Z BG	$R_{\rm eff}(\rm kpc)$	R _{Ein} (kpc)	M _V (mag)
0.1642	0.3239	10.8	4.58	16.56

 $\sigma^* = 326 \pm 13 \text{ km/s}$ f_DM (1 Reff) = 0.20±0.08

C.Spiniello

LENS

SDSSJ0936

STELLAR KINEMATICS

z _{lens}	Z BG	$R_{\rm eff}(\rm kpc)$	R _{Ein} (kpc)	M _V (mag)
0.1897	0.5880	6.61	3.45	17.12

 $\sigma^* = 326 \pm 13 \text{ km/s}$ f_DM (1 R_{eff}) = 0.04±0.03

C.Spiniello

Kapteyn Astronomical Institute University of Groningen (NL)

ENS

COMPLETELY BLIND ANALYSIS

1. Lensing & Dynamics

-

parameter	prior	posterior	prior	posterior
	J0936	J0936	J0912	J0912
$v_{\rm vir}/{\rm kms^{-1}}$	U(0, 650)	49^{+64}_{-32}	U(0, 650)	385^{+115}_{-83}
γ	U(0, 2)	$1.04\substack{+0.64 \\ -0.67}$	U(0, 2)	$0.53^{+0.50}_{-0.37}$
<i>c</i> ₋₂	U(0, 50)	18^{+17}_{-14}	U(0, 50)	$9.1^{+4.5}_{-3.5}$
$q_{ m h}$	LN(1, 0.3)	$0.94^{+0.29}_{-0.21}$	LN(1, 0.3)	$0.54^{+0.09}_{-0.07}$
$M_{\star}/10^{11} M_{\odot}$	U(0, 10)	$3.41\substack{+0.09 \\ -0.20}$	U(0, 35)	$10.12\substack{+0.67 \\ -0.70}$
b	U(0, 5)	$0.88^{+0.34}_{-0.34}$	U(0, 5)	$1.94^{+0.21}_{-0.24}$

 The stellar masses inferred from the spectroscopic single stellar population (SSP) modelling based on line-strength indices is fully consistent with the *independent* inferences from the combined lensing and dynamics study (which makes no assumptions on the IMF)

C.Spiniello

 The stellar masses inferred from the spectroscopic single stellar population (SSP) modelling based on line-strength indices is fully consistent with the *independent* inferences from the combined lensing and dynamics study (which makes no assumptions on the IMF)

 The stellar masses inferred from the spectroscopic single stellar population (SSP) modelling based on line-strength indices is fully consistent with the *independent* inferences from the combined lensing and dynamics study (which makes no assumptions on the IMF)

ENS

- Line-index-based stellar mass higher than the L&D one
- IMFs significantly steeper than Salpeter ("bottom-heavy", $x \ge 3.0$) are ruled out with decisive evidence: Bayes factor B > 1000

- Line-index-based stellar mass higher than the L&D one WHY?
- IMFs significantly steeper than Salpeter ("bottom-heavy", $x \ge 3.0$) are ruled out with decisive evidence: Bayes factor B > 1000

Using a (or more) set of isochrones and stellar libraries stellar population synthesis models construct the integrated light spectra: $cm_h(t)$

$$f(\lambda) = \int_{m_l}^{m_n(t)} s(\lambda, m) \,\phi(m) \,dm$$

where
$$\varphi(m)$$
 is the IMF: $\Phi(m) = \frac{dN}{dM} = M^{-x}$

Different codes -> different assumptions !!!

Impossible to determine Mlow from spectroscopic studies alone

Stars with masses below ~ $0.15M_{\odot}$ have no effect on the spectral lines for any assumed IMF slope (*CvD12*)...but they give a non-negligible contribution to the total mass budget of the system (*Worthey 1994*).

THE LOW CUTOFF MASS

We calculate (M/L)* using the isochrones at solar [Fe/H] from the state-of-the-art stellar evolution code Dartmouth Stellar Evolution Program selecting IMF slope, age, and [α/Fe] inferred from the line-strength analysis

DSEP,

C.Spiniello

ENS

LENS +

THE LOW CUTOFF MASS

FINAL JOINT PDF

MCMC to sample the joint lensing, dynamics and SSP posterior.

ENS

-

FINAL JOINT PDF

MCMC to sample the joint lensing, dynamics and SSP posterior.

C.Spiniello

E N S

EWASS2013 - SpS12

Slide 1/17

CONCLUSION

Combined Algorithm for Unified Lensing and Dynamics Reconstruction

- The inferences on stellar masses from two independent methods are consistent
- SSP modeling suggests a steepening of the IMF slope with mass (more data are coming!)
- First constraint on low-mass cutoff of the IMF $M_{low} = 0.12 \pm 0.03 M_{sun}$
- The joint inference on the IMF slope = 2.21 ± 0.14 is consistent with Salpeter

