The Radio Nebula produced by the 27 Dec. 2004 Giant Flare from SGR 1806-20

Joseph Gelfand (CfA)

27 Dec. 2004 Giant Flare

- Third Giant Flare observed from a magnetar
- Bright in X-rays and Radio
 - Peak flux > 100 mJy at 1.4 GHz
- Triggered world-wide radio monitoring campaign
 - Over an order of magnitude in frequency coverage
 - Over 100 epochs so far

Image courtesy of NASA
Multi-Frequency Light Curve

- Similar behavior seen at all radio wavelengths:
 - Initially, flux decreases as \(t^{-1.5} \) to \(t^{-2} \)
 - Between 9 and 25 days, flux decreases as \(t^{-3} \)
 - Source gets brighter, peaking at \(t \sim 30 \) days
 - Afterwards, flux decreases as \(t^{-1} \)

Gaensler et al. 2005, Gelfand et al. 2005
Radio Morphology

- Axis ratio of 2:1
- Position Angle -40° (North through East)
- Axis ratio, position angle constant for first ~30 days.

(Taylor et al. 2005, Fender et al. 2006)
Radio Position

- Proper motion detected along elongation axis
- Three phases:
 - Initially little movement
 - Between days ~9 and ~30, steady change.
 - After Day ~30, no/little movement

\(v = 0.3c \)

(Taylor et al. 2005)
Size of the Radio Source

- Significant changes observed:
 - Before day 9, little growth
 - Between days 9 and 30, constant expansion
 - After day 30, little growth
- Size and proper motion results imply one-sided expansion.

(Taylor et al. 2005)
Ejecta from the Neutron Star Model for the Radio Emission

- Giant Flare ejected material from neutron star.
- Collision with existing shell in the ISM.
- Shell of ejecta expands into surrounding ISM.
- Ejecta decelerated by swept-up ISM.

(Gelfand et al. 2005, Granot et al. 2006)
Ejecta from the Neutron Star Model for the Radio Emission

- Giant Flare ejected material from neutron star.
- Collision with existing shell in the ISM.
- Shell of ejecta expands into surrounding ISM.
- Ejecta decelerated by swept-up ISM.

(Gelfand et al. 2005, Granot et al. 2006)
Ejecta from the Neutron Star Model for the Radio Emission

- Giant Flare ejected material from neutron star.
- Collision with existing shell in the ISM.
- Shell of ejecta expands into surrounding ISM.
- Ejecta decelerated by swept-up ISM.

(Gelfand et al. 2005, Granot et al. 2006)
Ejecta from the Neutron Star Model for the Radio Emission

- Giant Flare ejected material from neutron star.
- Collision with existing shell in the ISM.
- Shell of ejecta expands into surrounding ISM.
- Ejecta decelerated by swept-up ISM.

(Gelfand et al. 2005, Granot et al. 2006)
Ejecta from the Neutron Star Model for the Radio Emission

- Explains observed elongation, proper motion, growth, light curve.
- Reproduces “bump” in the light curve.
- Implies $M_{ej} > 10^{24.5} \text{ g}$ and $E_{ej} > 10^{44.5} \text{ ergs}$

(Gelfand et al. 2005)

Figure 1 from Gelfand et al. 2005
Ejecta from the Neutron Star Model for the Radio Emission

- Compactness Problem
 - Mass outflow opaque to γ-rays at early times.

- Solutions:
 - Mass and γ-rays originate from different regions of the neutron star. (Gelfand et al. 2005, Granot et al. 2006)
 - Outflow not dominated by baryons.

(Lyutikov 2006)
Ejecta from the Neutron Star Model for the Radio Emission

- Compactness Problem
 - Mass outflow opaque to γ-rays at early times.

- Solutions:
 - Mass and γ-rays originate from different regions of the neutron star. (Gelfand et al. 2005, Granot et al. 2006)
 - Outflow not dominated by baryons. (Lyutikov 2006)

Figures 1b and 1c from Granot et al. 2006
Ejecta from the Neutron Star Model for the Radio Emission

- Compactness Problem
 - Mass outflow opaque to γ-rays at early times.

- Solutions:
 - Mass and γ-rays originate from different regions of the neutron star. (Gelfand et al. 2005, Granot et al. 2006)

- Outflow not dominated by baryons.
 (Lyutikov 2006)
VLA + Pie Town Observation

- 8 hour observation on 4 February 2006.
- Resolved radio emission:
 - Confirmed proper motion
 - Confirmed one-sided morphology
 - Compact and Diffuse emission?
VLA + Pie Town Observation

- 8 hour observation on 4 February 2006.
- Resolved radio emission:
 - Confirmed proper motion
 - Confirmed one-sided morphology
 - Compact and Diffuse emission?
Conclusions and Future Work

- 2004 Dec. 27th Giant Flare created a one-sided, expanding outflow
- If baryon dominated, $M_{ej} > 10^{24.5}$ g
- On-going theoretical modeling of ejecta model
- Further observations scheduled

New results (hopefully) soon!
Published Papers on the Radio Emission

 - Describes initial radio observations.
 - Describes initial radio observations, argues for a smaller distance, d~7 – 10 kpc.
 - Relativistic narrow + wide jet model for the radio emission
 - Refutes arguments of Cameron et al. 2005 for a smaller distance.
 - Relativistic Fireball Model for the radio emission
 - Discusses the observed re-brightening and presents the Neutron Star ejecta model.
 - Presents initial proper motion, expansion, and polarization results.
 - More detailed explanation of the Neutron Star ejecta model.
 - Early time VLBA and MERLIN observations.
 - Spheromac/magnetic flux rope theory for the radio emission.