

CHECK THE CENTRALIZED CONFIGURATION MANAGEMENT SYSTEM AT

410.4-SPEC-0004

Swift Mission Requirements Document

Prepared by:

<u>12.0c† 00</u> Date David Bundas, GSFC/730

Swift Systems Manager

Approved By:

23 Der 00 John Nousek, PSU PSU Lead Date

t 00 Date

Keith Mason, MSSL UK Lead, UVOT

10 /16/00 Date Neil Gehrels, GSFC/661

Swift Principal Investigator

12/27/00 Date

Albert Lepore, Spectrum Astro Spacecraft Manager

2000 VO cru Dáte

22.11.2000

Alan Wells, Leicester University Date UK Lead, XRT

10/12/00 Date

Tim Gehringer, GSFC/410.4 Swift Project Manager

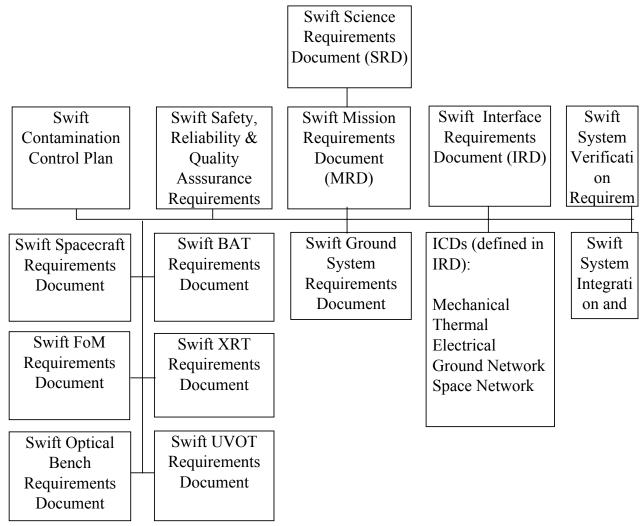
Guido Chincarini, OAB Italy Lead, XRT

TABLE OF CONTENTS

	Page
REVISION HISTORY	4
DOCUMENT TREE	5
INTRODUCTION	6
APPLICABLE DOCUMENTS	6
SCIENCE REQUIREMENTS	7
MISSION REQUIREMENTS	11
Launch/Orbit/Lifetime	11
Safety, Reliability & Quality Assurance	11
Interface Requirements	12
GRB Message Timing Allocations	12
BAT GRB Position Error Budget	12
XRT GRB Position Error Budget	13
Figure of Merit Performance Requirements	13
Spacecraft Performance Requirements	14
Ground System	16
Communications	19
Timing Error Budget	21
BAT GRB Position Error Budget	23
XRT GRB Position Error Budget	24

Page 3 of 31

CHECK THE CENTRALIZED CONFIGURATION MANAGEMENT SYSTEM AT


CHANGE DISPOSITION AND REVISION

REVISION/	DESCRIPTION	EFFECTIVE
CHANGE		DATE
NUMBER		
1.0	Original Release with Spacecraft Contract	22-Jul-99
2.0	Incorporated changes CCRs 410.4-9, 410.4-12 and 410.4-13	09-Jan-01
2.1	Incorporated changes CCR 410.4-25 AND CCR 410.4-27	28-Jun-01
2.2	Incorporated changes from CCRs 410.4-67, 68, 82	09-Oct-01
2.3	Incorporated changes from CCR 410.4-97	26-Feb-02
2.4	Incorporated changes from CCR 410.4-111	14-Nov-02

Page 4 of 31

CHECK THE CENTRALIZED CONFIGURATION MANAGEMENT SYSTEM AT

Swift Project Level Documents

Page 5 of 31

CHECK THE CENTRALIZED CONFIGURATION MANAGEMENT SYSTEM AT

	Swift Mission Red	quirements Document							
		Functional	Value	Source	Comments	Element/ Subsystem			
1	Introduction								
1.1	Scope	including the document hierarchy. Section 3 conta	cument establishes the science and mission requirements for the Swift Mission. Section 2 contains applicable documents g the document hierarchy. Section 3 contains the science requirements. Section 4 contains the derived and programmatic requirements on the Swift Project, instruments, spacecraft, mission operations, and ground segment.						
1.2	Mission Objectives	Swift is an observatory designed to provide multi- onboard telescopes (gamma-ray, X-ray, and UV/op of seconds make Swift the ideal mission for unrave - Probe the sites and nature of GRB progenitors - Explore the local environment near GRBs - Pioneer the use of GRBs as probes of the early U - Provide a sensitive all-sky hard X-ray survey This is accomplished through a complementary se 150 keV provides the primary GRB trigger and an The X-Ray Telescope (XRT) allows extended spec information down to 0.3 arcsec is then calculated t sensitive from 170-650 nm.	ptical) and the eling the gam Universe t of co-aligne all-sky hard ctral coverage	e capability to ima-ray burst d telescopes. X-ray survey. e from 0.3 – 1	The Burst Alert Telescope (BAT) ope The BAT has a large field-of-view (2 0 keV and provides 5 arcsec positions.	sition within 10s rating from 15- 2 sr half-coded). Positional			
2	Applicable Documents								

Page 6 of 31

CHECK THE CENTRALIZED CONFIGURATION MANAGEMENT SYSTEM AT

		Functional	Value	Source	Comments	Element/ Subsystem
	Document Hierarchy	 Unless otherwise stated in this document, all inconsistencies shall be resolved in the following order: 1. Swift Science Requirements Document 2. Swift Mission Requirements Document 3. Swift Interface Requirements Document 4. Swift Safety, Reliability and Quality Assurance Requirements 5. Swift Verification Plan and Environmental Specifications 				
3	Science Requirements					n/a
3.1	GRB database with good statistics					n/a
3.1.1		Number of GRBs detected per year by BAT [1]	> 150 [2]	SRD 1.1		BAT
3.1.2		Capability to efficiently detect short (<0.1 s) and long (100 s) GRBs by BAT (burst trigger requirement) [3]		SRD 1.2		BAT
3.1.3		Low energy threshold to discover soft GRBs by BAT (keV)	< 15 [4]	SRD 1.3		BAT
3.1.4		GRB detection sensitivity by BAT (improvement rel. to BATSE)	> 5X [5]	SRD 1.4		BAT
3.1.5		Percentage of newly detected GRBs with XRT/UVOT follow-up [6]	> 80	SRD 1.5		FoM, GND
3.1.6		Number of afterglow observations with >5000 s duration [1]	> 100	SRD 1.6		GND

Page 7 of 31

CHECK THE CENTRALIZED CONFIGURATION MANAGEMENT SYSTEM AT

	Swift Mission Requirements Document					
		Functional	Value	Source		Element/ Subsystem
3.1.7		Partially-coded FOV size for detecting rare GRBs by BAT (sr)	> 2.0 [7]	SRD 1.7		BAT

Page 8 of 31

CHECK THE CENTRALIZED CONFIGURATION MANAGEMENT SYSTEM AT

		Functional	Value	Source	Comments	Element/
						Subsystem
3.1.8		Percent deadtime for BBOY for BAT [8]	< 20	SRD 1.8		BAT
3.1.9		Capability to produce good (~5 arcmin) positions even for BBOY by BAT		SRD 1.9		BAT
3.1.10		Percentage of events stored on-board for highest fluence burst of year by BAT [9]	> 95	SRD 1.10		BAT
3.2	Rapid identification of counterparts					n/a
3.2.1		GRB rapid position time available on the ground from BAT (s)	< 20 [10]	SRD 2.1	MRD 4.5 - GRB Message Timing Allocations	BAT, FoM, S/C, GND, GCN
3.2.2		GRB rapid position absolute accuracy by BAT (arcmin)	< 5 [11]	SRD 2.2	MRD 4.6 - BAT GRB Position Error Budget	BAT, S/C, OB, XRT
3.2.3		GRB X-ray position time available on the ground from XRT (s)	< 100 [12]	SRD 2.3	MRD 4.5 - GRB Message Timing Allocations	XRT, FoM, S/C, GND, GCN
3.2.4		GRB X-ray position absolute accuracy by XRT (arcsec)	< 5 [13]	SRD 2.4	MRD 4.7 - XRT GRB Position Error Budget	-XRT, S/C
3.2.5		GRB optical finding chart time available on the ground from UVOT (s)	< 270 [14]	SRD 2.5	MRD 4.5 - GRB Message Timing Allocations	UVOT, S/C, GND, GCN
3.2.6		GRB optical finding chart position accuracy for relative astrometry (arcsec)	< 0.3 [15]	SRD 2.6		UVOT
3.2.7		GRB rapid spacecraft slew time for 80% of slews less than 50°	< 75 [16]	SRD 2.7		S/C
3.3	Measure distances (redshifts) for GRBs					n/a
3.3.1		GRB X-ray energy resolution by XRT (eV at 6 keV at launch +3 yrs)	< 400 [17]	SRD 3.1		XRT
3.3.2		GRB UV/optical resolving power by UVOT GRISM ($\lambda/\Delta\lambda$ at 300 nm for V<17)	> 300	SRD 3.2		UVOT

Page 9 of 31

CHECK THE CENTRALIZED CONFIGURATION MANAGEMENT SYSTEM AT

		Functional	Value	Source	Comments	Element/ Subsystem
3.4	Study GRB lightcurve evolution					n/a
3.4.1		GRB X-ray integral sensitivity by XRT from $0.2-10 \text{ keV} (10^{-14} \text{ erg cm}^{-2} \text{ s}^{-1} \text{ in } 10^4 \text{ s})$	< 2 [18]	SRD 4.1		XRT
3.4.2		GRB UV/optical sensitivity by UVOT (blue magnitude in 1000 s with open filter)	> 24 [19]	SRD 4.2		UVOT
3.4.3		Long wavelength limit to cover optical band by UVOT (nm)	600	SRD 4.3		UVOT
3.4.4		Short wavelength limit to cover UV band by UVOT (nm)	170	SRD 4.4		UVOT
3.4.5		Total number of minutes of data storage capability before and after a GRB by BAT (min)	> 10	SRD 4.5		BAT
3.4.6		Capability to modify automated on-board observing program		SRD 4.6		FoM, GND
3.4.7		Prompt upload capability for GRBs & transients discovered by other missions		SRD 4.7		FoM, GND
3.4.8		Observing program upload capability for follow- up observations of GRBs & transients		SRD 4.8		FoM, GND
3.4.9		Continuous monitoring of hard X-ray lightcurve during GRB observation by BAT, including slew		SRD 4.9		BAT
3.5	Hard X-ray survey					n/a
3.5.1		Hard X-ray survey sensitivity by BAT (mCrab at high galactic latitude in 1 yr. at 20 keV)	< 0.6 [20]	SRD 5.1		BAT
3.5.2		Hard X-ray survey uniformity by BAT (ksec per yr exposure for minimum point on sky)	>1000	SRD 5.2	This is a goal, not a requirement.	BAT, GND

Page 10 of 31

CHECK THE CENTRALIZED CONFIGURATION MANAGEMENT SYSTEM AT

		Functional	Value	Source	Comments	Element/ Subsystem
3.5.3		Hard X-ray average detector energy resolution (keV at 60 keV at launch +2 years)	< 7 [21]	SRD 5.3		BAT
3.5.4		High energy limit to cover hard X-ray diffuse peak by BAT (keV)	> 120	SRD 5.4		BAT
3.6	Transient observations					n/a
3.6.1		Hard X-ray transient detection sensitivity by BAT (mCrab at high galactic latitude in 1 day at 20 keV)	< 20	SRD 6.1		BAT
3.6.2		Sky coverage for transient monitoring by BAT (% of sky covered per day)		SRD 6.2	Goal is >80%	BAT
3.6.3		Bright X-ray source intensity capability by XRT (Crab)	> 15	SRD 6.3		XRT
3.6.4		Ground system reaction time to ToO's (hrs) [22]	< 2	SRD 6.4		FoM, GND
3.7	Data quality and mission success					n/a
3.7.1		Absolute time accuracy reconstructed on-ground (ms)	< 0.2	SRD 7.1	Sub-allocation required	S/C, GND
3.7.2		Absolute time accuracy on-board (ms)	< 1.0	SRD 7.2		
3.7.3		Time tagging accuracy relative to spacecraft clock by BAT (ms)	< 0.1	SRD 7.3		BAT
3.7.4		Time tagging accuracy relative to spacecraft clock by XRT (ms) [23]	< 10	SRD 7.4		XRT
3.7.5		Time tagging accuracy relative to spacecraft clock by UVOT (ms) [24]	< 20	SRD 7.5		UVOT
3.7.6		Spacecraft position knowledge reconstructed on ground (km)	< 30	SRD 7.6		GND
3.7.7		Spacecraft position knowledge on board (km)	< 50	SRD 7.7		

Page 11 of 31

CHECK THE CENTRALIZED CONFIGURATION MANAGEMENT SYSTEM AT

	Swift Mission Requirements Document							
		Functional	Value	Source		Element/ Subsystem		
3.7.8		End-to-end data loss (%) [25]	< 10	SRD 7.8	Sub-allocation required	All		
3.7.9		Observing efficiency outside SAA (%)	>80	SRD 7.9				
3.7.10		Mission life (yr)	> 2 [26]	SRD 7.10		All		

Page 12 of 31

CHECK THE CENTRALIZED CONFIGURATION MANAGEMENT SYSTEM AT

	Functional	Value	Source	Comments	Elem Subs
NOTES:					
1. Range of GRBs p	er year is due to range of possible longN-log	extrapolations below BATSE	threshold.		
2. Phase A Report Fa	ct Sheet	-			
3. Phase A Report Fa	ct Sheet p. 12				
4. Phase A Report Fa	ct Sheet, modified from 10 keV to 15 keV				
5. Phase A Report Fa	ct Sheet				
6. Assuming only GF	Bs available within instrument and pointing	constraints			
	ct Sheet (error in Phase A: baseline fully-co				
~1.5 sr, not 2.5 sr	n Phase A; baseline partially-coded is 2.5 sr.)			
8. BBOY = Brightest	Burst Of Year = 68 photons/cm ² -s in 10-1	0 keV range			
9. Highest fluence bu	rst of year = $4x10^{6}$ photons in 10-150 keV	range			
10. Phase A Report Fa	act Sheet, modified from 12 s to 20 s. From	GRB trigger to end of GCN pro	cessing time.		
-	able 3.1.5.4(b), 99% confidence radius assum	ing 8 sigma			
BAT detection (p.	· · · · · · · · · · · · · · · · · · ·				
-	act Sheet, modified slightly from 96 s to 100				
-	able 3.1.5.4(b), 99% confidence radius, for 0				
	able 3.1.5.4a, assuming UVOT observation i	allowed			
by constraints	~				
15. Phase A Report Fa					
	act Sheet, modified from 60 s to 75 s. Up to	160 s may be needed for the wo	orst case roll n	naneuvers required.	
17. Phase A Report p.					
18. Phase A Report Fa					
19. Phase A Report Fa					
20. Phase A Report p.					
21. Phase A Report F	-				
	n receipt of data indicating an exceptionally new observing program	nteresting transient			
23. Timing mode data	61 6				

Page 13 of 31

CHECK THE CENTRALIZED CONFIGURATION MANAGEMENT SYSTEM AT

Swift Mission Requirements Document					
	Functional	Value	Source	Comments	Element/ Subsystem

26. Phase A Report p. 3. Modified from 3 to 2 years at meeting with OSS Board of Directors on Nov. 28, 2001.

Page 14 of 31

CHECK THE CENTRALIZED CONFIGURATION MANAGEMENT SYSTEM AT

		Functional	Value	Source	Comments	Element/ Subsystem
1	Mission Requirements					n/a
1.1	Launch/orbit/lifetime					n/a
1.1.1	Launch Vehicle	The observatory shall be launched on a Delta class launch vehicle.		Project		LV
4.1.2	Launch Site	The observatory shall be launched from the Eastern Test Range (ETR)		Project		LV
4.1.3	Launch Date	The launch date shall be no later than September 30, 2003.		Project	Original MRD 1.2 stated June 30, 2003 as launch date.	LV, All
4.1.4	Launch Window	There are no launch window requirements driven by scientific requirements.		Project	Original MRD 1.3	LV
4.1.5	Mission Lifetime	Swift shall be designed for a mission lifetime of 2 years, which includes a 30 day on-orbit checkout.	>=2 years	SRD 7.10	Original MRD 1.1	All
1.1.6	Autonomous Operations	The mission shall be designed for autonomous operations for at least 72 hours without human intervention.		Project		All
1.1.7	Orbit Altitude		600 km ±20 km	Project	Mission design shall not preclude operations within these altitudes. Original MRD 1.4 says altitude must be less than 600 km.	LV
.1.8	Orbit Inclination		22°+1/-7°	Project	Mission design shall not preclude operations within these inclinations. Origianl MRD 1.5 says inclination must be less than 28.5°.	LV

Page 15 of 31

CHECK THE CENTRALIZED CONFIGURATION MANAGEMENT SYSTEM AT

		Functional	Value	Source	Comments	Element/ Subsystem
4.2	Safety, Reliability & Quality Assurance Requirements					n/a
4.2.1	Performance Assurance Implementation Plan	The developer shall provide a quality plan in accordance with the requirements of 410.4-SPEC-0001 "Swift SR&QA Requirements (MAR)."		410.4-SPEC- 0001		Instruments, FoM, OB, S/C
4.2.2	Quality Assurance	The developer shall meet the requirements for workmanship, failure reporting, and reviews as specified in the MAR.		410.4-SPEC- 0001		Instruments, FoM, OB, S/C
4.2.3	Safety	The developer shall plan and implement a system safety program as specified in the MAR.		410.4-SPEC- 0001		Instruments, FoM, OB, S/C
4.2.4	Design Assurance	The developer shall plan and implement parts, materials, reliability, and software assurance programs as specified in the MAR.		410.4-SPEC- 0001		Instruments, FoM, OB, S/C
4.2.5	Verification	The developer will conduct a verification program to ensure that systems meet their specified performance requirements.		410.4-SPEC- 0001		All
4.2.6	Nonconformance Documentation and Control	The developer shall provide a program for nonconformance documentation and control as specified in the MAR.		410.4-SPEC- 0001		Instruments, FoM, OB, S/C
4.3	Interface Requirements	The developer shall provide a system which meets the requirements of 410.4-ICD-0001, the Swift Interface Requirements Document (IRD).		Project		All
4.4	Reserved					

Page 16 of 31

CHECK THE CENTRALIZED CONFIGURATION MANAGEMENT SYSTEM AT

		Functional	Value	Source	Comments	Element/ Subsystem
4.5	GRB Message Timing Allocations	Swift subsystems shall be designed to meet the "End-to-End" Timing Requirements as specified in EB1 - Burst Alert Timing Budget [1]	See EB1 - Swift Burst Alert Timing Budget	SRD 2.1 SRD 2.3 SRD 2.5 Project		All
4.6	BAT GRB Position Error Budget	Swift subsystems shall be designed to meet requirements as specified in EB2 - BAT GRB Position Error Budget	See EB2 - BAT GRB Position Error Budget	SRD 2.2		BAT, OB, S/C
4.7	XRT GRB Position Error Budget	Swift subsystems shall be designed to meet requirements as specified in EB3 -XRT GRB Position Error Budget	See EB3- XRT GRB Position Error Budget	SRD 2.4		XRT, OB, S/C
4.8	Reserved					n/a
4.9	Figure of Merit Performance Requirements					n/a
4.9.1	Time Delay Due to FoM Processing	The FoM shall minimize time delay to slew to a new burst (design goal is <0.4 seconds for FoM processing).	See EB1 - Swift Burst Alert Timing Budget	SRD 2.1		FoM

Page 17 of 31

CHECK THE CENTRALIZED CONFIGURATION MANAGEMENT SYSTEM AT

		Functional	Value	Source	Comments	Element/ Subsystem
4.9.2	Observing efficiency	The FoM will not significantly degrade the observation of GRB afterglows by Swift. The predicted number of XRT afterglow photons shall be greater than 80% of the total predicted for an optimally efficient system.		SRD 1.5	This requirement will be verified by analysis.	FoM
4.9.3	Multi-orbit Observations	The FoM shall allow for multi-orbit automated observations of new BAT source locations to maximize the NFI observing efficiency during the critical early phase of the afterglow.		SRD 1.5		FoM
4.9.4	Maximize Observing Time	The FoM shall allow for maximizing the observing time devoted to the uploaded program whenever an automated target is not being observed.		SRD 1.5		FoM
4.9.5	Automated Termination of Observations	The FoM shall allow for automated termination of automated observing of a target at the completion of a predetermined observing strategy		SRD 1.5		FoM
4.9.6	Override Automated Observations via Upload	The FoM shall allow for pre-specified uploaded observations to override automated observations		SRD 1.5		FoM
4.9.7	Uploaded Automated Observations	The FoM shall allow for automated observations triggered by TDRSS commands		SRD 1.5		FoM
4.9.8	Override Automated Observations	The FoM shall allow for the current automated target to override new GRBs based on input from the instruments.		SRD 1.5		FoM

Page 18 of 31

CHECK THE CENTRALIZED CONFIGURATION MANAGEMENT SYSTEM AT

	Swift Mission Requirements Document							
		Functional	Value	Source		Element/ Subsystem		
4.9.9	Override Automated Observations via NFI Input	The FoM shall allow for extension of the automated observing time based on input from the NFIs.		SRD 1.9	This is not a requirement on the NFIs.	FoM		

Page 19 of 31

CHECK THE CENTRALIZED CONFIGURATION MANAGEMENT SYSTEM AT

	Swift Mission Re	quirements Document				
		Functional	Value	Source	Comments	Element/ Subsystem
4.9.10	Adjustment of Observing Time	The FoM shall allow for adjustment of the fraction of observing time allocated to the automated and uploaded programs for extended automated observations		SRD 4.7		FoM
4.9.11	Termination of Observations by TDRSS	The FoM shall allow for termination of automated target observations by command from the ground.		SRD 1.5		FoM
4.9.12	Accommodate New Observing Strategies	The FoM shall allow for a workable mechanism to implement new automated observing strategies after launch.		SRD 1.5		FoM
4.9.13	Disable Slew Requests	The FoM shall have the capability to disable slew requests to the S/C by command.		SRD 4.6		FoM
4.10	Spacecraft Performance Requirements					n/a
4.10.1	Interface Requirements	The spacecraft bus shall meet the interface requirements as specified in the Swift Interface Requirements Document (410.4-ICD-0001)		Project	Original MRD 2.1	S/C
4.10.2	Mass	Spacecraft Bus mass shall not exceed 660.0 kg.		Project	Original MRD 2.2 Includes spacecraft components mounted to the optical bench	S/C
4.10.3	Mass Margin	This section was deleted per CCR 410.4-82		Project	Original MRD 2.3	S/C

Page 20 of 31

CHECK THE CENTRALIZED CONFIGURATION MANAGEMENT SYSTEM AT

		Functional	Value	Source	Comments	Element/ Subsystem
4.10.4	Power	Spacecraft Bus solar array shall produce 2215 W (EOL), orbit average power, for the orbit specified above.		Project	Original MRD 2.4	S/C
4.10.5	Bus Power	Spacecraft Bus subsystems (not including battery charging) shall consume no more than 450 W, orbital average power, including contingency.		Project	Original MRD 2.5	S/C
4.10.6	Power Margin	Bus Power Contingency of 47.4 Watts (included in the 450 W above) shall be sub-allotted for spacecraft bus use only. Spectrum shall manage the allotted power contingency internally and will provide to the Swift Team the current best estimate of bus power on a timely basis.		Project	Original MRD 2.6	S/C
4.10.7	Bus Data Volume	Downlinked spacecraft bus housekeeping shall have a real-time telemetry rate of less than 45 kbps, and an average daily stored telemetry rate of less than 1 kbps.		Project	Original MRD 2.7 was at 400 Mbits/day.	S/C
4.10.8	Link Margins - STDN	Spacecraft and RF ground station design shall provide RF link margins of at least 3dB on all downlinks, and at least 5dB on all command uplinks.		Project		S/C, GND
4.10.9	Link Margins - TDRSS	Spacecraft shall provide RF link margins of at least 1dB on all TDRSS downlinks, and at least 1dB on all TDRSS command uplinks. Link margins shall be calculated using the Communication Link Analysis and Simulation System (CLASS) at GSFC.		Project		S/C, GND

Page 21 of 31

CHECK THE CENTRALIZED CONFIGURATION MANAGEMENT SYSTEM AT

		Functional	Value	Source	Comments	Element/ Subsystem
4.10.10	Command & Telemetry Database	The spacecraft shall define and manage the contents of the observatory telemetry and command database, with required inputs from the instrument teams. The database shall be used through I&T, and transitioned to the MOC prior to launch.		Project		S/C, GND, BAT, XRT, UVOT
4.10.11	Spacecraft Epoch Time	The spacecraft clock shall represent the elasped time in sections from the beginning of calendar year 2001.		Project		S/C,GND
4.11	Ground System			Project		n/a
4.11.1	Compatibility with I&T operations.	The MOC shall use a telemetry and command processing system that is compatible with the system used for observatory I&T.		Project		GND
4.11.2	Command & Telemetry Data base Ingest	The ground segment shall have the capability to ingest, validate and use the observatory telemetry and command data base provided by the spacecraft vendor.		Project		GND
4.11.3	Command & Telemetry Database	The MOC shall maintain the flight Command & Telemetry database based on the observatory I&T database.		Project		S/C, GND, BAT, XRT, UVOT
4.11.4	Level 0 Processing	The MOC shall receive the raw science telemetry data from the observatory, generate the associated quick-look and production level 0 science data products, and deliver them to the Swift Data Center.		Project		GND
4.11.5	History Log and Data Retrieva	The MOC shall maintain a history log of all commands sent to the observatory, a log of telemetry completeness, and have the capability to retrieve the data as needed for analysis.		Project		GND

Page 22 of 31

CHECK THE CENTRALIZED CONFIGURATION MANAGEMENT SYSTEM AT

		Functional	Value	Source	Comments	Element/ Subsystem
4.11.6	Autonomous Burst Alert Message Processing	The MOC shall provide the capability to autonomously receive and process alert messages from the observatory, including Burst Alert Messages and spacecraft alert messages.		Project		GND
4.11.7	Operations	The Mission Operations Center (MOC) shall have the capability to support mission operations 24 hours per day, 7 days per week.		Project	After the early orbit operational checkout is complete (approximately 30 days), planned staffing of the MOC is 8 hours a day, 5 days a week.	GND
4.11.8	Automated Operations - Command and Telemetry	The MOC shall support fully automated ground station pass execution, including command uploads and playback of recorded data.		Project		GND
4.11.9	and Safety	The MOC shall have the capability to autonomously determine satellite and instrument health & safety status through automated housekeeping data analysis.		SRD 2.2		GND
	Automated Operations - Paging	The MOC shall have the capability to autonomously page an operator for satellite or instrument emergencies or other mission operations anamolies, such as a missed ground station pass during the off-shift.		Project		GND
1.11.11	Deleted					
4.11.12		The MOC shall have the capability to process and display real-time housekeeping and engineering telemetry and to generate and transmit real-time commands.		Project		GND

Page 23 of 31

CHECK THE CENTRALIZED CONFIGURATION MANAGEMENT SYSTEM AT

		Functional	Value	Source	Comments	Element/ Subsystem
4.11.13	Recovery from Ground System Failures	The MOC shall have the capability to recover from any internal hardware failure and return to operations within 12 hours.		Project		GND
4.11.14	Flight Dynamics Functions	After launch and early orbit operations, the MOC shall perform all flight dynamics functions required to support the Swift mission, including attitude determination and orbit analysis.		Project		
4.11.15	Spacecraft Clock Maintanence	The ground segment shall maintain knowledge of the spacecraft clock to within 0.2 milliseconds of UTC.		SRD 7.1		GND
4.11.16	Flight Software Updates	The spacecraft, instrument, and ground segment shall support the capability to update the onboard flight software post-launch.		Project		S/C, GND, BAT, XRT, UVOT
4.11.17	Flight Software Maintenance - Instruments	The instrument providers shall maintain facilities and expertise for the development and validation of Swift instrument flight software updates and the maintenance of instrument flight software for the duration of the mission.		Project		BAT, XRT, UVOT
4.11.18	Spacecraft Mission Planning	The MOC shall perform all spacecraft mission- planning and scheduling functions.		SRD 7.1		GND
4.11.19	Instrument Operational Planning	The MOC shall perform instrument operational mission planning and scheduling functions.		Project		GND
4.11.20	ToO Processing	The MOC shall support the receipt and processing of Target of Opportunity requests from the science community.		Project		GND

Page 24 of 31

CHECK THE CENTRALIZED CONFIGURATION MANAGEMENT SYSTEM AT

		Functional	Value	Source	Comments	Element/ Subsystem
4.11.21	Command Checking	The MOC shall verify all command uploads against resource constraints prior to uplink to the spacecraft.		Project		GND
4.11.22	Operations	Tracking and orbit determination for launch and early orbit shall be provided by the launch service provider. This should include a predicted state vector pre-launch and an actual insertion vector provided to the MOC within TBD minutes after final seperation.		Project		LV
.11.23	Orbit Determination	The MOC shall provide the capability to generate orbit ephemeris data to an accuracy of 30 km.		SRD 7.5 SRD 7.6		GND
.11.24	System Security	The ground segment shall provide system security to ensure that only authorized personnel can access system capabilities (such and spacecraft commanding) and mission-critical data.		Project		GND
.12	Communications			Project		na
4.12.1	Data Volume	The Swift ground segment shall provide sufficient RF communications coverage with the spacecraft to downlink all recorded telemetry data (up to 5.23 Gbits per day).		SRD 7.5	Data volume does not include RF communications overhead.	GND
4.12.2	CCSDS Protocols	Ground and flight communication systems shall be compatible with CCSDS Version 1 COP-1 commanding and CCSDS Advanced Orbiting Systems (AOS) telemetry protocols.		Project		S/C, GND

Page 25 of 31

CHECK THE CENTRALIZED CONFIGURATION MANAGEMENT SYSTEM AT

		Functional	Value	Source	Comments	Element/ Subsystem
4.12.3	Bit Error Rate	The average end-to-end bit error rate of data provided to the Swift Data Center shall not affect more than TBD% of the data packets. This applies to both Malindi and TDRSS data separately.		Project		GND
4.12.4	Primary Link	Swift shall utilize S-band in STDN mode for primary space/ground communications (uplink & downlink). S-band communications shall be possible regardless of the spacecraft attitude.		Project		GND, S/C
4.12.5	Burst Alert Link	For alert messages, Swift shall utilize TDRSS when safe. Link shall be capable of least a 1 kbps data rate, including all communications overhead.		Project		GND, S/C
.12.6	Burst Alert Link - Distribution	The ground segment shall provide the capability to receive alert messages from the observatory via the SN, process them, and distribute them to the science community.		SRD 7.6		GND
12.7	ToO Communications	For alert messages from the ground, Swift shall utilize TDRSS MA Forward services, scheduled and provided using the existing TDRSS capabilities. Link shall be capable of least a 125 bps data rate, including all communications overhead.		Project		GND, S/C
1.12.8	Uplink data rate	The Swift uplink in STDN mode shall be capable of at least a 2 kbps data rate, including all communications overhead.		Project		GND, S/C

Page 26 of 31

CHECK THE CENTRALIZED CONFIGURATION MANAGEMENT SYSTEM AT

	Swift Mission Re	quirements Document				
		Functional	Value	Source	Comments	Element/ Subsystem
4.12.9	Downlink Data Rate	The Swift science data playback downlink shall be capable of at least 2.25 Mbps data rate, including all communications overhead.		Project		GND, S/C
	Real-time Housekeeping Downlink Rate	The Swift real-time housekeeping (HK) telemetry downlink shall be capable of at least 42 kbps data rate, including 4.1 kbps of instrument HK.		Project		GND, S/C
4.12.11	Ground System Coordination	The MOC shall be responsible to coordinate all operationally-related data communications between the ground stations, and supporting remote facilities.		Project		GND

NOTES:

1. The subsystem allocated times shown in table EB-1 are for budgetary purpose used to show how the end-to-end timing requirements are met.

Page 27 of 31

CHECK THE CENTRALIZED CONFIGURATION MANAGEMENT SYSTEM AT

EB1 - GRB Alert Data Products Timing Requirements

	EB1.1	EB1.2	EB1.3	EB1.4	EB1.5	EB1.6	EB1.7	EB1.8	EB1.9	
SRD source		SRD2.1			SRD2.3		SRD2.5			
Data Product =>	GRB Alert	BAT Position	FoM Will/Will Not Observe	S/C Will/Will Not Observe	XRT Position	BAT Light- curve	UVOT Finding Chart	XRT Spectrum	XRT Image	Flow
Message Size (In Bytes)	<i>≤ 58</i>	<i>≤ 92</i>	≤ 68	≤ 68	≤60	≤ 2150	<i>≤ 2000</i>	≤ 2200	≤ <i>680</i>	Instrumen
Estimated No. of Telemetry Packets	1	1	1	1	1	3	3	3	1	(info only)
Estimated No. of Telemetry Frames	1	1	1	1	1	21	19	21	7	(info only)
All Time Based Off Burst Trigger										
BAT GRB Location/ FoM Slew Request (s)		6.0	6.2	6.2	6.2	6.2	6.2	6.2	6.2	BAT/foM
BAT/FoM to C&DH, ACS Slew Check & Request to Safe UVOT (s)	0.4	0.4	0.4	0.8	1.0	1.0	1.0	1.0	1.0	S/C
UVOT Safing (s)					1.0	1.0	1.0	1.0	1.0	UVOT
UVOT Reply to C&DH (s)					0.4	0.4	0.4	0.4	0.4	S/C
Spacecraft slew/settle (s)					75.0		75.0	75.0	75.0	S/C
Instrument Processing (s)			2.0	2.0	5.0	115.0	150.0	200.0	7.0	Instrumen
Instrument to C&DH (s)					0.3	0.5	1.4	0.8	0.4	S/C
C&DH to Transponder (s)	0.4	0.4	0.4	0.4	0.4	0.8	0.8	0.8	0.5	S/C
S/C to TDRSS Initial Delay (s)	9.0	4.0	3.0	4.0	0.0	0.0	0.0	0.0	0.0	S/C
Swift to WSC @ 1 kbps (s)	2.3	2.3	2.3	2.3	2.3	22.8	20.8	22.8	8.5	S/C
WSC processing (s)	3	3	3	3	3	3	3	3	3	Ground Sy
WSC to GCN (s)	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	Ground Sy
GCN Processing (s)	0.1	0.1	0.1	0.1	0.1	0.2	0.5	0.5	0.5	GCN
Allocated Total Times (s)	15.5	16.5	17.7	19.1	95.0	151.2	260.4	311.8	103.8	
End-to-End Timing Requirement (s)	20	20	70	70	100	200	270	1200	1200	
Margin (Time)	4.5	3.5	52.3	50.9	5.0	48.8	9.6	888.2	1096.2	
Margin (%)	29%	21%	295%	266%	5%	32%	4%	285%	1056%	

Page 28 of 31

CHECK THE CENTRALIZED CONFIGURATION MANAGEMENT SYSTEM AT

GRB Alert Data Products Timing Requirements enumerates the key science data products and the timing requirement for each to be received at the GCN. The timing breakdowns denote the current estimates for each step in order to show how the overall time requirement is met. The "Flowdown" field denotes the responsible organization for each step. Note that additional usage of the TDRSS link is planned spacecraft emergencies, and, on a non-interference basis, observatory state-of-health telemetry.

Field definitions:

• Message Size (In Bytes) – This field denotes the message size of the data product, including CCSDS packet telemetry header (~12 bytes) for each packet.

• Estimated No. of Telemetry Packets – This field denotes the number of telemetry packets that will be used to downlink the data product. If a data product is greater than 958 bytes, it must be broken down into smaller packets of less than or equal to 958 in order to be transferred from the instrument to the C&DH.

• BAT GRB Location/ FoM Slew Request & UVOT Safing -

• For the GRB Alert & the BAT Position – this field denotes the time allocated for the BAT to locate the GRB and make the position packet available to the C&DH on the 1553 bus.

• For all other data products - this field denotes the time allocated for the BAT to locate the GRB and includes 0.4 seconds for the FoM to request a slew. Note that this is the time allocated for the FoM to transfer the slew request to the C&DH. Note that This time should also be sufficient for the UVOT to safe itself.

• BAT/FoM to C&DH – This denotes the time allocated to transferring the message to the C&DH.

• Spacecraft slew/settle – This field denotes the time allocated for the spacecraft to slew 50 degrees & settle on a target. Note that this time begins when the s/c receives the slew request from the Figure of Merit.

• Instrument Processing – This field denotes the time allocated for an instrument to generate the data product.

• Instrument to C&DH - This field denotes the time allocated to transfer the data product from the instrument to the C&DH.

• C&DH to Transponder – This field denotes the time allocated for the C&DH, once it has received it from the instruments, to forward the data product to the transponder.

• S/C to TDRSS Initial Delay – This field denotes the time allocated for the worst case initial delay to synchronize & lock up with TDRSS. The nominal delay is expected to be less than 0.5 seconds.

• Swift to WSC @ 1 kbps – This denotes the time allocated to downlink the data product to WSC at a 1 kbps rate.

• WSC Processing - This field denotes the time allocated to process the message at WSC before transferring to the GCN.

• WSC to GCN - This field denotes the time allocated to transfer the message from WSC to the GCN.

• GCN Processing – This field denotes the time allocated to process the message at the GCN.

• Allocated Total Times - This field denotes the sum of all allocation times.

• End-to-End Timing Requirement - This field denotes the top level science end-to-end time requirement for each data product.

• Margin (Time) - This field denotes the margin (in time) for each data product.

• Margin (%) - This field denotes the margin (in %) and is calculated as [margin in time]/[allocated total times].

Page 29 of 31

CHECK THE CENTRALIZED CONFIGURATION MANAGEMENT SYSTEM AT

EB2 Coarse Position Error Budget

		BAT Position Error		
	Error Source	Pitch, Yaw	Subsystem	Comment
		arcmin, 3σ , each		
EB2.1	BAT Internal Alignment	2.00	BAT	
EB2.2	BAT Centroiding Error	4.00	BAT	
EB2.3	BAT/ST Alignment (Thermal)	1.00	OB, XRT	Optical Bench requirement, roll alignment same
EB2.4	ACS Pointing Knowledge-Roll Error Effect	1.65	S/C	1.5 arcmin ACS knowledge results in 1.65 arc min position error at the edge of the BAT FOV
EB3.5	ACS Pointing Knowledge-Pitch, Yaw	0.05	S/C	
	TOTAL (RSS)	4.87		—
	REQUIREMENT	5.00		
	Margin (RSS)	1.13	-	

Page 30 of 31

CHECK THE CENTRALIZED CONFIGURATION MANAGEMENT SYSTEM AT

EB3 XRT GRB Position Error Budget

		Pitch, Yaw	Subsystem
		arcsec, 3s, each	
EB3.1	XRT Internal Alignment Error	1.5	XRT
EB3.2	XRT Centroiding Error	1	XRT
EB3.3	XRT/ST Boresight Cal	1	XRT, S/C
EB3.4	XRT/ST Alignment (Thermal)	1	XRT, S/C
EB3.5	ACS Pointing Knowledge	3	S/C
EB3.6	Radiator-induced Misalignment	1	
	TOTAL (RSS)	3.9	
	Requirement	5.0]
	Margin (RSS)	3.1	_

Notes:

EB3.1 includes pointing errors caused by CCD heat pipe forces transmitted to the XRT tube, as well as distortions from the mounting interface with the Optical Bench.

The addition of a Telescope Alignment Monitor (TAM) may eliminate some or all of EB3.1, EB3.4. It would also add EB3.6 - TAM residual error.

Page 31 of 31

CHECK THE CENTRALIZED CONFIGURATION MANAGEMENT SYSTEM AT