

Fig.2 Schematic Structure of Detector Head

DEP #4 tube shows SIB-free event shapes

453-2300-5060 volts

Fig. 3 Event profiles captured by a low noise CCD camera with x3 optics

Fig. 4 Pulse height distribution of a XMM-OM FM-intensifer (DEP_#6)

Fig. 5 Model event profiles

Fig. 6 Event capture by CCD pixels

Fig. 7 Event capture by CCD pixels

(2 pixels centre of gravity)

16H16H40M00S1999/09/22/Fig.10Standard event profile of DEP_#8 intensifer60snap frames

Fig. 13 M/N distribution by uniform bomberdment on a CCD pixel

Fig. 15 Fixed patterns after LUT's correction

Fig. 16 Effect of discontinuity on centroiding image

Fig. 17 Gray scale contour map of 2-dimension characteristic curve

Fig. 18 Variation of characteristic curve along Y-direction

Fig. 19 Discontinuity in characteristic curves due to transition of smapling CCD pixels

Fig. 21 True geometry of subpixel boundary

3-Pix centre of gravity

1-dim LUT

right event size FWHM=1.07 CCD

event profile from DEP_#8 tube

Fig. 22 True geometry of subpixel boundary

Parabola fitting

1-dim LUT

right event size FWHM=1.07 CCD

Fig. 23 True geometry of subpixel boundary

2-Pix centre of gravity

1-dim LUT

right event size FWHM=1.07 CCD

Fig. 25 True geometry of subpixel boundary

Parabola fitting

1-dim LUT x2

for large event FWHM=1.20 CCD

LUTs were tunned to FWHM=1.07 CCD

Fig. 26 2-dimension fixed pattern for various event size

Fig. 27 True geometry of subpixel boundary

Parabola fitting

². ╉—dim LUT

for small event FWHM=0.95 CCD

LUT was tunned to FWHM=1.07 CCD

Fig. 28 True geometry of subpixel boundary

Parabola fitting

2-dim LUT

for large event FWHM=1.20 CCD

LUT was tuned to FWHM=1.07 CCD

Fig. 30 True geometry of subpixel boundary

Parabola fitting

5x5 CCD sample 1-dim LUT x2

for small event FWHM=0.95 CCD

LUTs were tuned to FWHM=1.07 CCD

Fig. 31 True geometry of subpixel boundary

Parabola fitting

5x5 CCD sample 1-dim LUT x2

for large event FWHM=1.20 CCD

LUTs were tuned to FWHM=1.07 CCD

Fig. 32 Brightness variation along a CCD pixel

Fig. 33 Low noise and deep valley of XMM-FM tube in pulse height distribution

Fig. 34 Effect of hot pixel

3-Pix centre of gravity

Hot Pixel = 1 ADU

Scale of displacement vector is x5.0 times

< 1 CCD Pixel >

Parabola fitting	Infinition Infinition Infinition Infinition Infinition Infinition Infinition Infinition Infinition Infinition Infinition Infinition	Image: Second	$\neq 1 \text{ co } Pixel \Rightarrow$
		 101 01 101 00 101 00 101 00 101 00 100 00000000	· · · · · · · · · · · · · · · · · · ·

Fig. 36 Effect of hot pixel

2-Pix centre of gravity

Hot pixel = 1 ADU

Scale of displacement vector is x5.0 times

Fig. 37 Fixed pattern caused by a hot pixel (=1 ADU)

 16H
 17M
 37S
 16H
 22M
 37S
 1997/09/05/

 Fig.
 38
 M:N
 map
 for
 X-axis
 F-F
 20,000
 c/s
 with
 XMM-QM's
 BPE

13H 34M 09S 13H 44M 09S 1997/09/07/ Fig. 39 M/N distribution with XMM-OM's QM BPE

	S
	BIS
	- 130
	άX
• • • • • • • • • • • • • • • • • • •	Ē
· · · · · · · · · · · · · · · · · · ·	
	8
	C ie
	daı
***************************************	un U
	bd
	1 -
	Ine
••••••••••••••••••••••••••••••••••••••	Ē
******************************* ₽**€	th
	w.i
\sim	e
\mathcal{G}	maç
***************************************	bu
	it :
	Din
	i U
***************************************	6
	ot
	Ph
	· 📼
	46

\mathbb{C}^{\times}	

M/N distribution near M/N=0 without rand&mizing Fig. 42

Fig. 43 $\,$ M/N distribution around M/N=0 with Mod-4 randamizing

