XMM OPTICAL MONITOR

XMM

v
=
= -
< P
= =)
a =
a T
g =
= =
= 2
Z
=]

UNITED KINGDOM

X-ray Multi-mirror Mission Optical Monitor

User Manual Part 1B -
Experiment On-Board Software -
Digital Processing Unit
XMM-OM/UCSB/ML/0012.11

The XMM/OM DPU Instrument Team

21 September 99
(printed 21 September 1999)

University of California, Santa Barbara

Department of Physics

A Document Change Record

Date

Version

XMM/OM UM PART1B-DPU

Comments

15 August 94
15 November 94
15 March 95

7 April 95
October 95
February 96

22 June 98

4 May 99

21 Sep 99

0003.draft0.1
0003.draft0.2
0003.draft0.3
0003.draft0.4
0003.draft0.5
0003.1
0012.1
0012.2
0012.3

Initial Draft

US Internal Draft

OM Internal Draft
EIDR Draft

Updated Draft

Initial release

Delivery to ESA
Updates to §6.2
Major updates/rework

i

Contents

A Document Change Record

B Abstract

C Acknowledgement

1 Introduction

1.1
1.2
1.3
1.4

1.5

Purposeo
Scope . ..
Font Conventions in this Document
References
1.4.1 XMM-OM Controlled Documents
1.4.2 Other References

Document Overview

2 DPU Overview

2.1

2.2

2.3

2.4

2.5

Hardware Overview
2.1.1 Global Memory
DPU Software Overview
221 White DSP L.
2.2.2 BlueDSP1&BlueDSP2
223 RedDSP
DPU States and Commands
2.3.1 Boot-Idle State and its Commands

2.3.2 Boot-Idle and DPUOS-Idle Commands

2.3.3 DPUOS-Idle States
2.3.4 White DSP task Commands
2.3.5 Executing Tasks
2.3.6 Red DSP States
2.3.7 Blue DSP States
DPUModes
241 ImageMode.
242 FastMode.
Engineering Modes and Data
2.5.1 Raw Data Mode 0, 1,and 2)
2.5.2 Centroid LUT Calculation (Mode 3)

2.5.3 Full Frame at High Resolution (Mode 4)

XMM/OM UM PART1B-DPU ii

XMM/OM UM PART1B-DPU iii

2.5.4 Centroid LUT Confirmation (Mode 5) 17
2.5.5 Event Height & Energy (Mode 6) 17
2.6 Communication Between Processors 17
2.7 Heartbeats e e 18
2.8 DPU Programming Idiosyncrasies oo 18
System Context: DPU Interfaces 19
3.1 The DPU - ICU Serial Synchronous Interface (SSI) 19
3.1.1 Hardware e e e e 19
3.1.2 Transmitting data L. oL 19
3.1.3 Receiving data 20
3.1.4 SSIblock gaps e 20
3.1.5 SSTerrors o L e e e e 20
3.1.6 Dataformat. e e 20
3.1.7 Further detail on the DPU software 21
3.2 The Blue Detector Interface 21
3.3 The DPU - ICU Time Interface i 21
Functional Description of Individual Tasks and Task Control 24
4.1 Design Method o . e 24
4.2 White DSP Software e e 24
4.2.1 DPUOS:white.asm.« v v vttt it e et e e e e e e e e e 24
4.2.2 DPUOS:white_crtO56y.asm o v v v v v it ettt e e e e e e 27
4.2.3 DPUOS:cwhite.c it e e e e e 27
4.3 White Science Software L e 28
4.3.1 whitedsp.C e e e e e 28
4.3.2 shared 10 functionsS.C o i v i it it e e 31
4.3.3 shared variables.cC. i e 32
4.34 sucalbgd.C e e e e e e 32
4.3.5 sucaldrft.c. L e e e e e 32
4.3.6 SUCOMPITESS.C . « & v v v vt vttt e et et et e e e e e e e e e 33
4.3.7 sudeliverdata.cC o v it it e e e e e e e e e e e e 34
4.3.8 sudowindoW.C oLt e e e e e e e e e e e e 35
4.3.9 sudpuabort.c 36
4.3.10 su_engineering.cC ittt e e e e e 37
4.3.11 sugetref.c L. 37
4.3.12 sudnit eXp.Co e e e e e e e e 38

4.3.13 su_initialize.cC. v i i e 38

XMM/OM UM PART1B-DPU iv

4314 su_l0oCategS.C e e e e e e e 39
4.3.15 sumakeags id.C 39
4.3.16 surestorestars.c e 40
4317 SUTETA.C. . v v vt e e e e e e e e 40
4.3.18 su_scanbs.C e e e e e e 41
4319 SUSCANES.C . . v v v e e e e e e e e 42
4.3.20 su_submit_compress g.C e 43
4.4 Red DSP Software e e e e 43
441 RedOSired.asm e e e 45
442 RedOS:ired crt056y.asm 45
443 cred.cl 45
4.4.4 Red Science Software:reddsp.co oo e e e 46
4.5 Blue DSP Software e e e e 47
4.5.1 Dlue.asm it e e e e e e e e e e e 48
4.6 Utilities o o e e e e 50
4.6.1 Dbluesplit.cC. e e e e 50
4.6.2 boot_split.c. 50
4.6.3 cal cheCkSUm.Cl 50
4.6.4 cmnder.C L e e e e e e e e e 50
4.6.5 createloader lut.C it e e 50
4.6.6 sizetest.c. L 51
4.6.7 STEC.C . v v v i it e e e e e e e e e e e 51
4.6.8 strip lodWwfeC.C it e e e e e e 51
Library of DPU software package 51
5.1 Headerfiles o 51
5.2 Utilities o . L e e e e e 52
Acronyms and Abbreviations 57
XMM/OM DPU Lexicon 58

Compiling Utilities 63

1 INTRODUCTION XMM/OM UM PART1B-DPU 1

B Abstract

The Digital Processing Unit (DPU) is responsible for processing data from the detectors of the X-ray Multi-
mirror Mission Optical Monitor (XMM/OM). This document is a description of the framework for the flight
software. Section 1 is an introduction to this document, §2 is a description of the DPU and the tasks it is
required to perform, and §3 describes the DPU’s interfaces to related systems. Functional descriptions of
the each software component are separated into three sub-sections in §4: White DSP, Red DSP, and Blue
DSP softwares. The library header files of the DPU software are described in §5. Appendix A lists the
acronyms and abbreviations used in this document, Appendix B is a lexicon of terms used in describing the
DPU operation, and Appendix C contains a description of the compiling utilities and procedures used to
compile the flight software and prepare it for loading into the DPU memory.

C Acknowledgement

The contributing authors of this document are Jeonghee Rho (UCSB), Scott D Horner (Penn State), James
R. M. Klarkowski (Sandia), Cheng Ho (LANL), Alan D. Welty (Penn State), Tim Sasseen (UCSB), Phil
Smith (MSSL) and Jamie Kennea (UCSB).

1 Introduction

1.1 Purpose

The purpose of this document is “Experiment on-board software: functional description including software
task definitions, purpose, actions performed, inputs and outputs for each task, task control and scheduling
information, synchronisation information and software flow diagrams” (Section 5.X.8.1 in Doc No. PS-RS-
0028).

This document is intended to satisfy the requirements of the ESA Software Engineering Standards (ESA
PSS-05-0) and the Guide to the Software Architectural Design Phase (ESA PSS-05-04). This document
describes the architectural design of the XMM/OM DPU flight software.

This document supersedes the document, “Overview of the XMM Optical Monitor Digital Processing Unit
(XMM-OM/PENN/TC/0026.01).” This document describes an overview of the on-board software, the
“DPU Software Detailed Design Document (XMM-OM/UCSB/ML/0013),” covers indevidual routines in
more detail.

1.2 Scope

This document provides a description of the on-spacecraft or “flight” software for the Digital Processing Unit
(DPU) for the XMM Optical Monitor. This includes both the operating system software and the scientific
processing software in the DPU. The Instrument Control Unit (ICU) software and ground support software
are discussed elsewhere.

Software produced for the DPU consists of three software packages, named for the four DSPs: 1) White
software for the White DSP; 2) Blue software for the two Blue DSPs; and 3) Red software for the Red
DSP. The White and Red software are further sub-divided into the “Science” software and the “Operating
System.” This document covers the entire suite of software, known collectively as the DPU Software.

Some of the software described here can be run in simulation on a UNIX platform. For details on running
simulations, see the documents “DPU Simulation User’s Manual” (XMM-OM/PENN/ML/0002) and “DPU
Electronic Ground Support Environment and Software Development Environment” (XMM-OM/PENN/SP/0005).

1 INTRODUCTION XMM/OM UM PART1B-DPU 2

1.3 Font Conventions in this Document

Running text shall appear in this normal Roman font. [talic font will indicate special emphasis. Items that
appear in the DPU Lexicon (Appendix B) will appear in a slanted font.

The filenames of source modules (C or assembly code, shell scripts, etc.), the names of units (e.g., subroutines)
within modules, and variable names within code modules will be rendered in ¢ ‘typewriter’’ font.

In the sections that describe the code, the names of major tasks of the White and Red DSP science codes
(within whitedsp.c and reddsp.c) will appear in LARGE CAPS SAN SERIF. In the description of the White
science code, the names of the swap units will appear in SMALL CAPS SANS SERIF. For example, the swap
unit DELIVERDATA is comprised of several functions, including its top level deliverdata(), in the source
module su_deliverdata.c. DELIVERDATA is used in five of the White DSP tasks, including FINISH_FRAME
and ENGINEERING.

2 DPU OVERVIEW

1.4 References

XMM/OM UM PART1B-DPU 3

1.4.1 XMM-OM Controlled Documents

Document Number

Title

XMM-OM/MSSL/ML/0005
XMM-OM/MSSL/ML/0011
XMM-OM/MSSL/SP /0007

XMM-OM/MSSL/SP /0014

XMM-OM/MSSL/SP /0056

XMM-OM/MSSL/TC/0015
XMM-OM/MSSL/TC/0032
XMM-OM/PENN/ML/0002
XMM-OM/PENN/SL/0008
XMM-OM/PENN/SP /0005

XMM-OM/PENN/TC/0004
XMM-OM/PENN/TC/0010

XMM-OM/PENN/TC/0021

XMM-OM User Manual Part 1A - Experiment On-Board Software - ICU
XMM-OM User Manual Part 3

XMM/OM Electrical Interface Specification

XMM-OM User Manual Part 4

Blue Detector Electronics Detailed Design

Fiber Taper Distortion Associated with the MIC

Blue Detector Engineering Setup Modes

XMM/OM DPU Simulation User’s Guide

XMM/OM DPU Team C Language Coding Conventions
XMM/OM DPU Electronic Ground Support Equipment
and Software Development Environment

DPU Processing for XMM/OM

The Effects of Differential Non-linearity in a
Photon-Counting Imager and a Solution

Absolute Pointing Determination for the XMM/OM

Detector

Documentation may be found at the UCSB website http://xmmom.physics.ucsb.edu and the MSSL XM-
M/OM website http://mssls7.mssl.ucl.ac.uk/.

1.4.2 Other References

Motorola 1990, DSP56000/DSP56001 Digital Signal Processor User’s Manual
(DSP56000UM/AD REV 2).

Hatley, D.J. & Pirbhai, I.A. 1988, Strategies for Real-Time System Specification, New York: Dorset House.
Kernighan, B.W. & Ritchie, D.M. 1988, The C Programming Language, 2nd ed., London: Prentice Hall.

1.5 Document Overview

Section 2 is a description of the DPU and the tasks it is required to perform, and §3 describes the DPU’s
interfaces to related systems. A description of the system design methods, and the software architecture data
flow diagrams and state transition diagrams is in §4. Descriptions of the software components (here each
software file is a component) are separated into three sections: the master processor, White DSP software,
the Red DSP Software and the Blue DSP Software in §5. Library header files of the DPU software are
described in §6. Appendix A lists the acronyms and abbreviations used in this document, Appendix B is
a lexicon of terms used in describing the DPU operation, and Appendix C contains a description of the
compiling utilities and procedures used to compile the flight software and prepare it for loading into the
DPU memory. This document is organized following the template laid out in ESA PSS-05-04.

2 DPU Overview

The DPU is responsible for on-board detector data handling and compression to conform with the telemetry
constraint while maintaining flexibility and maximizing scientific performances. The DPU software will
perform the following major scientific tasks:

2 DPU OVERVIEW XMM/OM UM PART1B-DPU 4

Detector data accumulation, aquisition of images, and fast mode processing

Data processing

Absolute pointing determination

High accuracy spacecraft drift tracking

Collection and transmission of science data

The DPU software will perform the on-board processing of science data from the MIC detectors, and pass
these data to the ICU for transmission to the OBDH. By accumulating images on board and compressing
prior to downlink we can reduce the OM telemetry rate to the limit allowed by the spacecraft. The DPU
also calculates the spacecraft drift from frame-to-frame using stars within the field of view.

Two major data collection modes are supported by the DPU. They are:

e Imaging a large detector area over a long (> 1 ks) exposure time (image mode)

e Collecting high resolution time series data over a small detector area (fast mode)

Despite the fact that the Blue detectors involve CCDs, the MIC detectors are fundamentally different, and
the format of the data received by the DPU reflects that difference. The detector is a Micro-channel plate
Intensified CCD (MIC) is read out as a “photon counting” device. The MIC CCD is read out continuously
(with a typical CCD frame time of 10 ms) and the Detector Electronics process the image by centroiding
the “photon splashes” induced on a phosphorous screen by electron clouds emitted from the micro-channel
plate. The data transmitted to the DPU are in “event” format — each word represents a photon detected,
and contains the location on the detector of the event.

The data rate from the MIC detector is dependent on the number of pixels in the exposure and the flux
from astronomical sources — the more photons are received, the more events to be transmitted to the DPU.

It is not possible to telemeter the information obtained from every photon detected owing to telemetry rate
limitations. The DPU therefore must reduce the data before telemetering. This is done by filtering the
data spatially and temporally — by restricting the data telemetered to user-defined “windows” (rather than
the entire detector collecting area) and accumulating, or “integrating” images over time. Because of drifts
in the spacecraft attitude, objects will wander on the focal plane at the resolution of the OM. Therefore
the accumulation of image data in the DPU memory needs to be accompanied by an algorithm to co-add
windows from a series of short (~10 s) tracking frames, each of which can then be shifted by the amount of
the drift measured with respect to a reference frame.

When the telescope slews to a new position, an acquisition frame lasting one frame time (~10 s) is taken with
the Blue detector, in full-format, low-resolution mode, normally behind a V filter. A catalog is made of the
brightest stars (512 maximum) in the field of view. As many as 32 objects from the HST Guide Star Catalog
(or similarly bright stars with accurately known sky positions), whose coordinates are up-linked and delivered
to the DPU by command, serve as absolute guide stars for field acquisition. A pattern-matching algorithm is
employed to match the absolute guide stars with bright stars detected in the field. The search space is limited
to the estimated pointing uncertainty of ~ 1’. Best fit values are calculated for the absolute pointing errors
AX, AY, and AO. These errors give the discrepancy between the commanded bore-sight orientation and
that obtained and are used to determine which detector pixels correspond to the observer-selected science
windows.

A similar sequence of events precedes each exposure. First, a reference frame, lasting one frame time, is
exposed, again with the Blue detector in full-format, low-resolution mode, this time using the observer-
selected filter. Then, as above, a catalog is made of the brightest stars in the field of view. Up to 10 of
the cataloged stars which meet several acceptance criteria (e.g., range of field position, morphology, etc.)
are selected to be used as guide stars. Science windows in addition to those specified by the observer are
established automatically by the DPU around the guide stars; these are sometimes referred to as “tracking
windows.”

2 DPU OVERVIEW XMM/OM UM PART1B-DPU 5

A set of non-overlapping data collection windows called memory windows contain the science windows. A
memory window corresponds to a fixed sample of detector pixels whereas a science window corresponds to
a fixed patch of sky. Thus science windows may drift around within memory windows as the satellite drifts,
however the latter are intended to be sufficiently large that such drift should not cause the edge of a science
window to cross the boundary of the memory window in which it resides. Each memory window is comprised
of one or more detector windows.

An exposure consists of an integral number of tracking frames during each of which the satellite is supposed
not to have drifted significantly relative to the 0.”5 extent of a MIC detector pixel. The guide stars chosen
from the reference frame are relocated in each tracking frame and best fit values for the drift in x and y
(and the roll) are calculated. The roll, which should be small, is ignored, and the translation, rounded to the
nearest pixel, is used in the Fast Mode and Image Mode algorithms to shift the science windows acquired
during the tracking frame into alignment with the reference frame, thereby maintaining spatial registration.

The ICU dictates which of its major functions — field acquisition, guide star selection/window configuration,
or tracking/data accumulation - the DPU performs as if it were submitting batch jobs to a processor. The
ICU is notified when these various functions have been completed. All the timing is handled by the DPU.
For example, the enabling and disabling of detector event processing which correspond, respectively, to the
beginning and end of a reference frame exposure, or a 1000 s image exposure, are controlled internally; the
White DSP, which keeps an eye on the DPU bus cycle (millisecond) count, sends signals to the Blue DSPs at
the appropriate times to initiate or halt the flow of data into global memory. Data are queued for delivery
to the ICU at appropriate intervals and the ICU is given an “alert” whenever new data are introduced
to the queue. A typical operational sequence is described in §5. Explanatory notes intended to facilitate
understanding of the ICU control of the DPU are provided in that section.

2.1 Hardware Overview

The major hardware components of the DPU is shown in Figure 1. A large block of global memory (4 M
16-bit words plus 1 M 24-bit words) stores temporary and accumulating data. Four processor cards access
the memory in series via a global bus, with access to the bus managed by an arbiter board. Each processor
is granted access to the bus once per millisecond. The DPU shares the Digital Electronics Module crate with
the ICU and an integral power supply that supplies power to the DPU and ICU.

The four Motorola 56001 Digital Signal Processors (DSPs) have local (on-chip and on-board) memory, plus
access via the global data bus, to global memory. Each of the four processors is assigned specific tasks and
are labeled according to the tasks that they perform: White DSP, Blue DSP 1, Blue DSP 2, and Red DSP
whose details are described in the next section. The White processor is responsible for overall management
of the other processors, communication with the ICU, initial field acquisition, and spacecraft drift tracking.
The Blue DSPs are responsible for data collection and initial processing of the Blue Detector data. The Red
DSP is responsible for performing the shift-and-add calculation.

2.1.1 Global Memory

The DPU global memory consists of 12.5 Mbytes of RAM, and is accessed via the global memory bus. Each
DSP card has its own local memory which can be accessed only by the DSP on the card. On-board memory,
consisting of 32 words of 24 bit words is available to each processor for program and variable storage. Each
processor also has an on-processor memory. The global memory is divided into three partitions, Small
Word Memory (SWM), Big Word Memory (BWM), and Program memory. The four DSPs share the global
memory via a global data bus and global address bus. The global RAM map can be found in p22 XMM-OM
User Manual Part 1A - Experiment On-Board Software - ICU (XMM-OM/MSSL/ML/0005.1).

e Program Memory (Storage) consists of 0.5 Mwords of RAM arranged in 24 bit words, and 8 Kwords
of PROM also arranged in 24 bit words.

2 DPU OVERVIEW XMM/OM UM PART1B-DPU 6

e Small Word Memory consists of 4 Mwords of RAM arranged in 16 bit words. It is used primarily for
temporary storage of tracking frame data. Data for the engineering modes and full frame applications
(e.g., acquisition and reference frames) will also be stored there.

e Big Word Memory consists of 1 Mword of RAM arranged in 24 bit words. It will be used for storage
of the current and previous accumulated images, as well as processed engineering mode data (required
only for centroiding confirmation mode).

e PROC memory is a 32768 word section of BWM used for storage of parameters for inter-DSP commu-
nications.

e Program memory consists of 0.5 Mwords of RAM arranged in 24 bit words, and 8 kwords of PROM
also arranged in 24 bit words.

e Read Only memory (ROM) contains instructions to boot the computer, while Ramdom Access Memory
(RAM) has no previous memory, often random values or zeroes.

The PROM contains the bootstrap software for all four processors for loading the software from the program
storage into the processor’s local memory. The program storage, containing the operating system and the
data processing software is keep-alive and can be modified during the flight.

The swap units are designed to use the bus sparingly and to enable as much number-crunching as possible
between successive bus access opportunities. It is estimated that the DSPs will be able to read/write
256 words from/to global memory per 1 ms DPU bus cycle; this rate is given by the static variable
WORDS_PER_BUS_ACCESS.

If a processor does not release the global memory bus, after several bus cycles the watchdog on the arbiter
card will reset the DPU. After a reset, the DPU will return to the Boot—Idle state.

"Ndd IWO/IWINX dy3 Jo wreiderp 3pofg :T 9andig

XMM-OM DPU Block Diagram

MIINGINO NdA ¢

Det ect or Data ICU
Time
sal
+ + + ss|

Arbiter Red DSP Blue DSP Blue DSP White DSP| LV

BI_>- 1 2 Power
ue
Detector 32kx24 32kx24 32kx24 32kx24 Supply
RAM RAM RAM RAM
XMM 10 XMM 11 XMM 11 XMM 11 XMM 11

Smal | Word Menory Big Wrd Menory Program Menory

RAM RAM RAM ' [RAM RAM ' [RAM PROM

1Mx16 1Mx16 1Mx16 1Mx16 |! :]|0.5Mx24] |0.5Mx24|: :|0.5Mx24 8kx24
. 1 |Keep Alive

XMM 12 XMM 12 XMM 12 XMM 12 E XMM 13 XMM 13 E XMM 13 XMM 14

) Nda-g11dvd WN NO/ININX

2 DPU OVERVIEW XMM/OM UM PART1B-DPU &

2.2 DPU Software Overview

DPU is composed of three processors: White DSP, Red DSP and Blue DSP. While White DSP is the master
processor, Blue DSP converts the event data into an image format data, and processes fast mode data, and
Red DSP performs the shift-add operation. The DPU software overview diagram in Figure 2 illustrates the
main software components in the three processors, and the data processing tasks, and the connection to
ICU and BPE/DPU data capture interface. The hardware paths are such as Serial Communcatons Interface
(SCI) for ‘real-time’ commanding from the White DSP to the Red and Blue DSPs. There is ‘commanding’
or ‘configuring’ by White DSP to Red or Blue DSPs via the PROC area. No in/out arrows are attached to
the PROC area, because almost every software components uses PROC.

2.2.1 White DSP

The White DSP is the master processor, which handles all DPU/ICU communications. The White DSP
orchestrates the activities of the other processors and handles most of the data reduction performed by the
DPU.

e The White DSP:

— Commands and controls the other DSPs

— Communicates with the ICU and performs DPU-ICU I/O functions (receives commands and
transmits data)

— Manages observing configurations
— Performs pointing acquisition

— Calculates the spacecraft drift (tracking)

e The White DSP runs an operating system (DPUOS) written in assembly language and C that supports
the scientific software written in C.

e The scientific data processing tasks are managed by a central code which invokes major code fragments
(the “swap units”) to perform the tasks.

e All swap units are stored in the global memory (RAM). Due to limited space in local memory, only
the active swap unit can be stored in White DSP Ilocal memory. The swap units are loaded into the
local RAM through the DPUOS.

2.2.2 Blue DSP 1 & Blue DSP 2

Data from the Blue Detector are received in “event format”, Blue Detector event records representing photon
locations (centroids of photo-events). The primary task of the Blue DSPs is to convert the “event format”
data, which is a list of events, into an “image format” data, or an image stored in memory. The Blue DSPs
form an image in the DPU’s global memory by calculating and incrementing the address in global memory
of each event received — there is a one-to-one mapping of the coordinates of the event received to a location
in global memory.

The Blue DSP software is contained within one component, blue.asm, which is identical in both Blue DSPs.
It is coded in assembly language owing to the fast computations required by the expected event rate. The
address calculation algorithm is a simple calculation which is unlikely to be modified in the lifetime of the
mission. The processing parameters, such as the location in global memory of the accumulation image, are
controlled by the White DSP, and are updated for each exposure.

e Two Blue DSPs are necessary to handle the expected event rate.

2 DPU OVERVIEW XMM/OM UM PART1B-DPU 9

e The DPU arbiter can be commanded to route all the Blue Detector events to one or the other Blue
DSP, or alternate the events between the two Blue DSPs.

e The Blue DSPs accumulate the image in memory for one tracking frame time (between 10 and 20
seconds).

¢ Blue Fast Mode processing is performed by the Blue DSPs.

The Blue DSPs are responsible for blue detector event processing and the Blue Fast Mode.

As mentioned in §2, blue detector data are delivered alternately to the Bluel and Blue2 DSPs. The raw
data are buffered and the global memory is updated when the global bus becomes available. Whenever a
Blue DSP is not preoccupied by buffering incoming data or updating the global memory, it is busy turning
the raw data into memory addresses.

2.2.3 Red DSP

The Red DSP is used for only one purpose - performing the shift-and-add operation on each science window
of each tracking frame of the science exposures.

e The Red DSP has a “basic” operating system to support high-level (C) software.

e In nominal flight operation, the Red DSP runs in an infinite loop, waiting for the White DSP
to command it to perform one of its two tasks (RED_INITIALIZE just after loading DPUOS, and
RED_ACCUMULATE_IMAGE during science observations).

e Red DSP receives commands from White DSP via SCI link, and will share required parameters (e.g.,
status flags) with White DSP via the PROC area of global memory.

XMM/OM UM PART1B-DPU 10

2 DPU OVERVIEW

“2un i S} LY UMOYS) pEjap
apy ¥auxaa s dspaiim
ayp Ag Aowsw ponl sy Aoway Eqa)

2 wispEd S55008 &y | J&)ON

dsPay

)

g/ d50=N|g

0BR[]
ainden ele(]
Ndd=dd

inding ele(
13 n_ ﬂ_EU
M-50Nd(

nal

Figure 2: DPU Software Overview. The thick arrow shows a simple presentation of task execution between

White DSP and Global Memory. The solid and dotted lines indicate data flows, and dedicated hardware

path, respectively. For details, see the text.

2 DPU OVERVIEW

2.3 DPU States and Commands

The DPU has three major states of process: the first state is execute “Boot—Idle”, the second state is
“DPUOS-Idle”, and the third state is “Executing Task” as shown in Figure 3, the state transition diagram
for the DPU. When one initially boots the DPU, starts DPUOS, and runs an exposure, these will be the
steps noticed as “Fred, Jim, and executing task”. In this section, the three major states are described,
and the commands for performing the state are listed one by one in execution order. The records of those
commands can be found in “XMM-OM User Manual Part 4,” (XMM-OM/MSSL/SP/0014). Figure 3 is the
state transition diagram for the DPU. Once the spacecraft powers up, Keep Alive Line (KAL) is turned on,
i.e. the power will be on into DPU, DPU memory will be loaded. When in the boot-idle state, the spacecraft
will load the ICU and be waiting for loading the DPU. After loading the DPU, DPUQOS-idle states is in the

next command.

Launch ———>

FulT Of (main
and keep
alive power
of f)

Spacecraft Power - up

KAL Power on

Of (main
of f and keep
alive power

on)

Pover O f
of

DPU

Pover (On

Bootstrap activated

Boot-Idle
(software
not | oaded)

Command (limted set)

Up-1oad software
by Tel econmand

Execute Command

Software in Program Menory

b

Reset

DSP

Power On

Bootstrap Activated

>

—

Boot-Idle
(software
| oaded)

Command (limted set)

Boot DPUCS

Execute Conmand

Mai n
Pover
of

DPU O f

<+— Mai n Power O f

il

Reset

Abor t

DPU

Task Conplete

DPUCS- | dl e

LS

Start Task Command

Software Toaded to Tocal
nenory and boot ed

Command (nain set)

Execute Command

Figure 3: : DPU State Transition Diagram. The DPU has three major states: 1) Boot—Idle; 2) DPUOS-Idle;

A

Executing
Task

Conmand (mai n set)

Execute Command

and 3) Executing Task. These states are discussed in detail in the text.

XMM/OM UM PART1B-DPU 11

2 DPU OVERVIEW XMM/OM UM PART1B-DPU 12

2.3.1 Boot-Idle State and its Commands

When the DPU is initially powered on, the White DSP initiates its Boot—Idle state. The commands recog-
nized only in Boot—Idle are listed below with a short description in the parentheses. The command name is
based on the key words of the description.

e IC_ENBL_LOAD_CODE (lock/unlock loading of code)

e IC_LOAD_CODE (load code into RAM)

e IC_LOAD_DPUOS (instructs DPU to load the DPUOS. This is used when the DPU is in Boot Ready
state)

e IC_SEL_RAM BANK (specifies the bank of program RAM to be loaded)

2.3.2 Boot-Idle and DPUOS-Idle Commands

Commands recognized both in Boot-Idle and DPUOS-Idle (see below) are:
e IC_DUMP_RAM (dump n 24 bit words from global RAM and then zero the RAM)
e IC_RESET.DSP (hardware reset of the selected DSP)

2.3.3 DPUOS-Idle States

The DPUOS-Idle state is entered in response to IC_LOAD DPUOS. At that point, the White DSP traffic control
routine (whitedsp()) is in its IDLE task loop, waiting to respond to a command to start a major task (The
White DSP IDLE task is equivalent to the DPUOS-Idle state.) In this state all commands from the ICU,
except those recognized in the Boot—Idle state only (see above), are recognized. The current list is:

e IC_RESET_DSP
e IC_SEL KLINGON (select which DSP among bluel, blue 2, red, and white, will be the klingon)
e IC_ENBL_DSP (enable/disable DSP)

IC_ENBL_EVENTS (enable/disable data generation from DSP)

e IC_DIRECT_DATA (direct detector data to either bluel, blue2, or both blue DSPs)

e IC_SEND_SCI_CMD (sends the command “message” from the white DSP to the targe DSP over the
SCI interface)

e IC_REQ_DATA (request ‘number’ blocks of data)

e IC_FLUSH QUEUE (request for the white processor to dump all data currently queued for output)

e IC_DUMP_LOCAL RAM (request a dump of local RAM - response in DR_LRM)

e IC_LOAD_LOCAL_RAM (load white local RAM)

e IC_DUMP_PROG_RAM (requests a dump of program RAM - reponse in DR_PROG_DUMP)

e IC_DUMP_RAM

e IC_DUMP_RAM_N_ZERO (dump n 24 bits words from global ram for an acceptance / confidence test
mode of operation, and then zero the RAM)

e IC_LOAD_GLOBAL RAM (load global RAM)

e IC_REPORT_TRK (report tracking history -causes DA_TRK alerts to be sent)

2 DPU OVERVIEW XMM/OM UM PART1B-DPU 13

IC_REPORT_DIAGS (activate/deactivate log- keeping for swap unit “module”)
IC_SET_FRAME_TIME (set tracking frame duration, where 1 DPU cycle = 0.001 seconds)

IC_SET_EXP_TIME (define exposure duration as some integral number of tracking frames)
IC_SET_EXP_ID (specify exposure ID)

IC_CONF_GS_SEL (set number of guide stars and their selection criteria)
IC_LOAD_REF_STARS (load list of field acquisition references stars)

IC_LOAD_FILT_CONF (inform DPU of type of filter being used)

IC_LOAD_MEM WDW (uplink memory window configuration data)

IC_LOAD_SCI_WDW (uplink science window configuration data)

IC_ENBL_VERBOSE (enables long form of data)

2.3.4 'White DSP task Commands

The commands which invoke major White DSP tasks by changing the value of the White DSP task_id
variable are:

e IC_INIT DPU (zeroes memory, readies swap units)

e IC_INIT_EXP (invokes the INIT_EXP task. This sets up the DPU to acquire detector data in 1K *
1K format, i.e. detector binned by 2)

IC_ACQUIRE_FLD (command DPU to excute a task for acquiring a field)

IC_CHOOSE_GS (command DPU to execute a task for choosing guide stars)

IC_TRACK GS (command DPU to execute a task for tracking guide stars)

IC_ABORT DPU (command DPU to abort - it leaves an exposure without disturbing the DPU by

initiating the abort task)
IC_ENBL_ENG (enable/disable DPU engineering mode data)

2.3.5 Executing Tasks

Several of the commands recognized in DPUQS-Idle are used to initiate major White DSP tasks, as indicated
above. The action taken upon task completion varies from one task to another. The tasks INIT_EXP,
INITIALIZE, ACQUIRE_FIELD, CHOOSE_GUIDE_STARS, and ENGINEERING check the value of the task_id
variable. If it is unchanged during task execution, it is set to IDLE, thus returning to the DPUOS-Idle
state. If task_id has changed, presumably by command from the ICU, control returns to the whitedsp()
control loop and the commanded task is invoked. The TRACK_GUIDE_STARS task also checks task_id, but
sets it to COMPRESS DATA rather than IDLE if it has not changed during execution. COMPRESS_DATA sets
task_id to FINISH FRAME upon completion during normal tracking operations. FINISH_FRAME checks the
value of task_id. If it has changed, it is reset to ABORT (TBC). If it has not changed during execution, it is
reset to TRACK_GUIDE STARS if the exposure is not complete, and to IDLE if the exposure is complete. The
FLUSH_COMPRESS task simply sets task_id to IDLE when it finishes, thus returning to the DPUOS-Idle
state.

Barring interruption by command from the ICU, the IC_TRACK_GS command initiates a sequence of TRACK_GUIDE_STARS-
COMPRESS_DATA-FINISH_FRAME executions, as indicated above. The number of iterations is the number

of tracking frames in the exposure. These tasks invoke each other in the proper sequence until the exposure

has finished. The latter two tasks are not commandable by the ICU.

Under normal circumstances, one exposure starts, its completion is controlled by the DPU with a progress
report sent regularly by the ICU. If the DPU receives an ICU command, the current exposure may be
corrupted. During execution of any task, the ICU may still send commands to the DPU. Behavior will
depend on the specific command.

2 DPU OVERVIEW XMM/OM UM PART1B-DPU 14

2.3.6 Red DSP States

The Red DSP has states analogous to DPUOS-Idle and Executing Task. The Red DSP starts up into
its “RedOS-Idle” state, which is an infinite loop in which the value of red_task_id is examined. When
that changes from RED_IDLE to another value (via SCI link command from the White DSP) the indicated
Red DSP task is executed, i.e., the Red DSP enters an “Executing Red Task” state. All three functional
Red DSP tasks, RED_INITIALIZE, RED_ACCUMULATE, and RED_ABORT, set red task id to RED_IDLE
upon completion, thus returning the Red DSP to its “RedOS-Idle” state. The Red DSP tasks are not
interruptible.

2.3.7 Blue DSP States

Because there is no operating system, the details of states are described in section 4.3.

2.4 DPU Modes

There are several modes of DPU operation for taking exposures. For normal science observations, the Blue
detector system allows us to use an “image” mode and a “fast” mode simultaneously. Each mode will have its
own set of science windows, which correspond to fixed patches of sky. The science windows will be embedded
in memory windows, which have fixed locations on the detector. Thus, science windows will move around
in their memory windows as the spacecraft drifts during an exposure. During science observations, data on
the guide stars used for tracking will be kept in tracking science windows. More than one science window
may exist within a memory window, and science windows may overlap.

To clarify this a little further: In the case of an image mode science window embedded in another, both share
the same memory window. In the ping/pong areas in small word memory, the information in the pixels used
by both science windows is stored only once. On the other hand, the shift-and-add process loops over all
image mode science windows separately, so in the accumulated images in big word memory the duplicated
pixels are stored twice.

2.4.1 Image Mode

In image mode, photons will be accumulated for the duration of an exposure. Image mode science windows in
the series of 10 s tracking frame images will be subject to the shift-and-add process to account for spacecraft
drift during the exposure. These re-registered data will be summed into an accumulating image, such that
the absolute position in sky coordinates is maintained for every photon.

The raw images may contain as many as 108 photons in any pixel. At the end of an exposure, the accumulated
image data for the image mode science windows are compressed and passed to the ICU for down-linking.

2.4.2 Fast Mode

It is possible to select up to two small regions of the field of view for higher time resolution observation.
Such regions will have fast mode science windows, each of which may include up to 512 detector pixels. At
an observer-specified interval (the fast mode slice period), these windows will be checked to determine the
number of counts detected in each pixel of the window. The DPU-imposed constraint on the Fast Mode
sampling time is approximately 100 ms.

The fast mode slice period must be an integer number of MIC CCD frame times. In general, this will not
be an integer factor of the tracking frame time. To avoid possible beating effects, fast mode will synchronize
to CCD frame markers supplied by the MIC detector.

The MIC CCD is continuously read-out. Once a CCD frame has been read out of the frame storage area
of the CCD, the next frame is transferred into the frame storage area. The time required to read-out a

2 DPU OVERVIEW XMM/OM UM PART1B-DPU 15

—» DataFlow
IMAGE MODE L oad Task

i
—_— Input

When Data available

Interrrupt
" o/ feow |\ RawDaa
and Storein urter

Buffer

_____ Convert Raw Data i
- into Small Word Image Window Constants

Address

Busl/O
Interrupt

Y

Address/increment
~&——— Output Buffer

Vauein Small
Word Address

isIncremented by 1,
incoming photon

- -

Small Word
Ping Pong Memory

Figure 4: Flow diagram describing the operation of the DPU in Image Mode.

CCD frame, and thus the CCD frame time, is dependent on the total number of CCD pixels in the science
windows. A CCD frame time will typically be about 10 ms, but can range between 2 ms and 11 ms. Inside
the DPU, the BPE decides the CCD frame time. Because of this mode of detector operation, it is possible
to have both fast and image mode science windows active at the same time. Thus, an observer might specify
a large image mode science window, to cover, say, a star forming cloud, and a couple of fast mode science
windows to record the short timescale variability (e.g., due to flares) of two known T Tauri stars in the cloud.

Because the tracking frame time and fast mode slice period in general will not be the same, no spacecraft
drift corrections will be applied to fast mode data. Therefore, since fast mode windows must be small, they
must be specified accurately.

2.5 Engineering Modes and Data

There will be six types of engineering mode that will be required from time to time during the mission and
seven types of engineering data (mode 3 creates the sub-type data of 3 and 7). For these engineering modes,
the ICU will command the Blue detector to transmit the desired type of engineering data to the Blue DSPs.
On the DPU side, software window setup will not correspond to the detector area(s) from which data are to
be saved. Rather, window setup will serve only for DPU memory management. The data format bit map
for each mode is illustrated in section 2.2.6.2.4 of “XMM-OM User Manual Part 1A - Experiment On-Board
Software - ICU” (XMM-OM/MSSL/ML/0005.1). For further details see “Blue detector Engineering Setup
Modes” (XMM-OM/MSSL/TC/0032.01).

2 DPU OVERVIEW XMM/OM UM PART1B-DPU 16

—» DataFlow

---» Load Task
—_— Input

Fast Mode FM pixel Address Arr

Busl/O
Int t
e Input aBlueFest \——m | FM Frame Buffer
Mode Frame (PI ng/ Pong)
(collected every FM
Slice Period)
_____ Compress FM
Frameinto FM OUtpUt
~& - - --| Differential address Data Buffer
Format T
Bus1/O
Interrupt Sequntially store
: -
., FMDaainFM —— Small Word memory
output areain Smal

Word Memory

Figure 5: Flow diagram describing the operation of the DPU in Fast Mode.

2.5.1 Raw Data (Mode 0, 1, and 2)

The Blue detector will transmit raw data event records; no address calculation will be performed by the
DPU software. The data will be limited by available memory and possibly by an “exposure” time. Mode 0,
1, and 2 are for raw data with both blue DSPs, only blue DSP 1, and only blue DSP 2, respectively. The
raw data for mode 0 has an output file of a concatenation of BLUE1 and BLUE2 because, when both blue
1 and 2 are on, events are sent even-odd to each sequentially as divided by the arbiter card. This is done by
the hardware.

2.5.2 Centroid LUT Calculation (Mode 3)

Centroiding is the process of locating the position of an event to an accuracy greater than that of a CCD
pixel which is divided into 8 x8 bins of uneven size, otherwise known as sub-pixels. In an ideal case equally
spaced boundaries among these sub-pixels are expected; for a real image intensifier and CCD camera, a
correction for the centroiding can be made by using a look-up table RAM. For each event and each x and
y axis, the processing electronics produces two 8 bit numbers, labelled by M, and N (the input is an M,N
image which is obtained by an electronics). The ranges of M and N are from -128 to 127 and from 0 to 255,
respectively. The ratio of M and N infers a fractional position within a CCD pixel of the event, in other
words, boundaries of the sub-pixels. The boundary numbers between the eight subpixels are calculated using
look-up tables (LUTSs), which are two tables containing all possible results of the division: one for X axis
and the other for Y axis. These tables are values of M/N and their integrated count number calculated from
M, N images. The output data M,N images are two 256 x256 arrays (this output is defined as sub-type data
7). Details may be found in “Blue Detector Engineering Setup Modes” (XMM-OM/MSSL/TC/0032.01) by
D. A. Bone.

2.5.3 Full Frame at High Resolution (Mode 4)

In this mode the output is a full frame at high resolution (8 “detector” sub-pixels per CCD pixel of a 256x256
image yields a 2048x2048 pixel image). The output of this mode is a full science image which has been

2 DPU OVERVIEW XMM/OM UM PART1B-DPU 17

—» DataFlow
---m Load Task
—— Input

RAW DATA
OUTPUT MODE

—_—

Reed Raw Raw Data Buffer
Dataand Store
in Buffer

Data Interrupt
e

-

----®/ split24bit Raw Raw Data

-- - - - Dataword into
Two 16 bit words Output Buffer

Busl/O
Interrupt

——

Sequentialy fill
Small Word

Memory with split
raw datawords

I Small Word memory

Figure 6: Raw Data Output diagram

accumulated and boundary corrected (by the centroiding algorithm) using the boundary values supplied.
This mode will require all of small word memory.

2.5.4 Centroid LUT Confirmation (Mode 5)

For this mode, we first obtain a high resolution full frame (repeat Mode 4). This frame is divided into 16
512x512 sectors, which will be considered separately in subsequent processing. That processing will sum
every eighth pixel in X and Y in a sector to produce 8x8 grid images each with 8 x8 pixels which represent
the average distributions of counts in the detector sub-pixels of the CCD pixels of each sector. The image
requires small word memory. The input image is a high resolution full frame image and the output image
is a pixel centroiding map; an input file of a flat image will create a flat centroiding confirmation map, and
the centroiding confirmation map will be brighter where the image is brighter.

2.5.5 Event Height & Energy (Mode 6)

This mode will be used to characterize the intensifier and CCD characteristics periodically throughout the
mission. The Blue detector will transmit two 256 element arrays containing histograms of event height (i.e.,
number of counts in each of 256 height). The histogram of counts for each 256 height can be used to examine
the intensifier and CCD characteristics, which would be an important output for engineers.

2.6 Communication Between Processors
There are two methods for communicating information among the DPU’s four Motorola 56001 Digital Signal
Processors (DSPs).

The first is via the the Serial Communications Interface (SCI), which is a three-pin serial communication
port built into the DSPs (see the DSP56000/DSP56001 Digital Signal Processor User’s Manual). The SCI

2 DPU OVERVIEW XMM/OM UM PART1B-DPU 18

is a unidirectional commanding link used for time-critical commanding. Only the White DSP can send
commands to the other DSPs. The two Blue DSPs and the Red DSP do not initiate communication on the
SCI interface.

For regular information transfer, the DSPs communicate through the global memory. For example, the
PROC area of global memory holds, among other information, status flags for several DPU functions,
including the status of the shift-and-add on the Red DSP. When the TRACK_GUIDE_STARS task has finished
calculating the spacecraft drift for the current tracking frame, it writes a few variables needed by the reddsp
code into the PROC area of global memory, commands the Red DSP via the SCI link to begin the shift-
and-add, and sets the PROC area variable red _saa_status to SAA_START. Then the COMPRESS_DATA task
is run. It works on compression until a short time (COMPRESS_TIME BUFFER milliseconds) before the end of
the current tracking frame time. Then it stays in a loop until red_saa_status has the value SAA_DONE. The
reddsp code writes that value to the PROC area when it finishes the shift-and-add. In this way, the Red
DSP informs the White DSP of its status. Also, many of the commands sent via the SCI tell the Red or
Blue DSPs to read information from the global memory.

2.7 Heartbeats

There are two types of heartbeats, the SSI and the SCI heartbeats. The SSI (the interface between the DPU
and the ICU) heartbeat is a signal sent from the DPU to the ICU saying, “We are here!” It is sent every
10 seconds (time interval set during compilation) whenever the DPU is powered, whether it is in Boot-Idle
state, DPUOS-Idle state, or Executing Task state (cf. Figure 3).

The SCI (interface between the DSPs) heartbeat is a signal sent by the Blue 1, Blue 2, and Red DSPs to the
White DSP indicating that they are operational. Every 1.0 seconds (time interval set during compilation),
the White DSP asks each of the other DSPs, in turn via SCI, if it is alive. Each must respond with the
“I am alive” signal written to global memory (when that DSP has access to the global address bus), which
the White DSP checks the following bus cycle. If White does not read the “I am alive” signal from global
memory, it issues an alert on the SSI to the ICU (DA_SCI_HBEAT_ERROR).

2.8 DPU Programming Idiosyncrasies

There are a few issues related to the actual programming that deserve brief mention here. These do not have
to do with coding standards, i.e., the format or appearance of the code, which is described in “XMM/OM
DPU Team C Language Coding Conventions” (document XMM-OM/PENN/SL/0008.02).

The switch/case constructions will be relatively inefficient on the DPU. A faster alternative is to use
equivalent if, else if constructions.

Division is a relatively slow operation, and should be avoided when possible. For example, we multiply by
0.001 rather than divide by 1000.

In two dimensional arrays, note that the second (Y) index varies faster than the first (X) index (see Kernighan
& Ritchie p. 217).

3 SYSTEM CONTEXT: DPU INTERFACES XMM/OM UM PART1B-DPU 19

3 System Context: DPU Interfaces

There will be two DPUs on board XMM/OM, one in each of the two (one primary, one redundant) Digital
Electronics Modules (DEM [a.k.a. OM2]). Only one DPU will be operational at a time. Each DPU has a
bi-directional interface to the ICU, a uni-directional time interface, and uni-directional interfaces to either
the prime or the redundant MIC detector.

The XMM/OM electrical interfaces are defined in Electrical Interface Specification (XMM-
OM/MSSL/SP/0007). For details on the DPU interfaces, refer to that document. There are a total of
three interfaces between the DPU and the other subsystems; two are serial interfaces between the DPU and
the ICU and MIC detectors, the third interface is a time interface.

3.1 The DPU - ICU Serial Synchronous Interface (SSI)

The ICU and DPU communicate via the bi-directional Serial Synchronous Interface (SSI), which is carried
on the DEM backplane. The definition of the SSI is also in XMM-OM/MSSL/SP /0007 “Electrical Interfaces
Specification”. The commands sent by the ICU to the DPU, and the data types sent from the DPU to the
ICU are defined in ICU — DPU Protocol Definitions (XMM-OM/MSSL/SP/0014). Those data types include
various alert messages that inform the ICU of the status of DPU processing.

3.1.1 Hardware

Both the ICU and the DPU can send and receive data on this interface but the ICU is the master.

The interface consists of:

e SSI_CLK: a continuous clock signal generated by the ICU
e SSI ENV_TX: active high when data present

e SSI_DATA_TX: 16-bit data

¢ SSI_ ENV_RX: active high when data present

SSI_DATA RX: 16-bit data

Signal return

Commands are sent from the ICU to the DPU. Science data is passed from the DPU to the ICU when
demanded by the ICU. Alerts are sent (unrequested) by the DPU to the ICU. There is no direct feedback
as part of the protocol and there is no error correction nor checksums. The interface can be thought of as
the same irrespective of direction.

The SSI clock frequency is 125 kHz producing a period of 8 us (1 bit-period). The SSI 16-bit data words
are separated by at least one bit-period and at most the SSI block gap (defined in software). The SSI data
blocks are separated by at least the SSI block gap (defined in software).

3.1.2 Transmitting data

The words that constitute the block are sent not more than the SSI block gap apart and, when finished, the
software must wait for at least the SSI block gap before sending more data. The receiving software must
wait for a little longer than the transmitting software’s block gap to be sure to see the gap. A factor of two
is sufficient.

3 SYSTEM CONTEXT: DPU INTERFACES XMM/OM UM PART1B-DPU 20

3.1.3 Receiving data

The data being received must be read suitably fast and if the time between any two words is greater than
the SST block gap, the gap will be considered a block gap. All blocks contain a length as their second word
so errors caused by an accidentally lengthened word gap may be identified (see data format).

3.1.4 SSI block gaps

Because the SSI block gaps are defined and used only in software they can be set to different values in
different versions of the code and they can be different depending on the direction of the data (ICU=-DPU
or DPU=ICU).

SSI block gaps as defined by the ICU software

EPROM code Uploadable code
ICU = DPU >4 ms > 4 ms
DPU = ICU 6 ms 4 ms

SSI block gaps as defined by the DPU software

EPROM code Uploadable code
ICU = DPU 2 +/-1ms 2+/-1ms
DPU=ICU 15+4/-1ms 15 +4/-1ms

The ICU’s SSI hardware will give an interrupt (used by the ICU’s software) at the end of the first word of
each block. The ICU software must then read this first word before the end of the second word. The time
for this is 16 bit-periods for the word and a minimum of 1 bit-period for the word gap. So the software must
be able to respond to the interrupt and read the word in 136 us.

An overflow (OVF) bit in the hardware SSI status word is made active (low) if a data word is not read before
the arrival of another.

3.1.5 SSI errors

If the DPU resets whilst transmitting the first part of a word, that word will be truncated and the envelope
will be truncated resulting in an earlier than expected “data receive” flag which will not be able to be
processed in time and cause an overflow on the ICU.

If the DPU resets whilst transmitting the last part of a word, that word and the envelope will be truncated
but not so much that the ICU’s software cannot keep up as in the previous case. This will result in a corrupt
last word and, except in the case of a reset during the last word, a truncated SSI block. This will be detected
and handled properly by the ICU’s software.

3.1.6 Data format

The data format is described in XMM-OM ICU-DPU Protocol Definitions. Each SSI data block consists of

1. 16-bit type - the block type
2. 16-bit length - the number of 16-bit words following this word (i.e. total length - 2)

3. the rest of the data

The data types are grouped into categories as follows:

e Regular DPU to ICU data blocks: Regular science data.

3 SYSTEM CONTEXT: DPU INTERFACES XMM/OM UM PART1B-DPU 21

DPU priority data: These contain science data that is sent out as soon as it is available rather than
at the end of an exposure.

DPU RAM dumps: RAM dumps.

DPU to ICU alerts: Alerts from the DPU to signify something is has happened, is ready or an error
has occured.

ICU to DPU commands: Commands to the DPU

3.1.7 Further detail on the DPU software

The DSP converts a serial SSI word to parallel word. Each received word generates an interrupt. The SSI
ISR pushes the word into a circular buffer. The 1ms ISR checks the COLLECTING_A_COMMAND bit. If it
is zero (cleared), it decrementes the delay count (stopwatch), else the delaycount (stopwatch) is reset. When
the delaycount reaches 0, it is assumed a valid comand has been received (a full block has been received),
and the command interpreter is called. The command interpreter checks for integrity of command: it checks
the block has:

e 3 valid command ID

e a legal length for command ID

It does not count the number of words received and compare this with the length stored as the second word.
The command interpreter is written in C and the rest of the SSI code in assembler.

On a hardware error the code will:

e Reset fill pointer.
e Send out bad block.

3.2 The Blue Detector Interface

The Blue Detector Interface is a uni-directional, three wire serial interface consisting of a clock signal,
envelope signal, and data signal, all of which are supplied by the Blue detector. The data from the Blue
detector arrives event-by-event, with the data rate dependent on the number of photons received by the
detector. The data received arrives at semi-random time intervals (Fourier analysis would reveal a power
peak at the CCD frame time of 10 ms).

Blue detector data words are 24 bits, whose content is specified in XMM-OM user’s manual (XMM-
OM/MSSL/ML/0005.1). The parity bit is read by the DPU hardware (arbiter card). If parity is even
(an even number of ones), the data word is rejected, if parity is odd, the data word is forwarded to one of
the two Blue DSPs. Events are alternately sent to Blue DSP 1 and Blue DSP 2 in order for the DPU to
handle the maximum data rate (i.e., event 1 is sent to Blue DSP 1, event 2 to Blue DSP 2, event 3 to Blue
DSP 1, event 4 to Blue DSP 2, etc.). The arbiter card hardware selects to which of the two Blue DSPs to
transmit the data. It can be commanded via the software to send all events to one or the other of the Blue
DSPs, or to send the events alternately to both Blue DSPs.

3.3 The DPU - ICU Time Interface

There is a uni-directional time interface between the ICU and DPU. The ICU will supply the DPU with
a time clock line and a time zero line, as defined in XMM-OM/MSSL/SP /0007, “Electronical Interfaces
Specification”.

3 SYSTEM CONTEXT: DPU INTERFACES XMM/OM UM PART1B-DPU 22

” Primiaty Pewer + Byn: -
g Radundart Powar + Sy o
gt High Laval On/Off Lines -
E Frimazy Kenp Alive -
i
Redundart Kaep Alve o
Primary Peowar + Syne
DBl 1 o
L oM 2
Datactor Data
Difal Ekctronics. OM 1
Ui Keep Alva Lins
DBU Power it Talascops
{Fiime) Lnit
KB
iz | OM2 Recundsnt Powier + Syne
Dt Electorics. |
Unit i Detactor Dadn
DBU Powar Keep Alve Lie
Redndanl} |.q
DB : Dightal Bus Inéarfacs
DEL: Digital Eug Unk
k5B ; Instruman Goniral Bus
Nota; Both ICB's contain dual radundant confral husssa

Figure 7: Context of the two DEMs (here referred to as Digital Electronic Units) and configuration of the
major electrical interfaces (Figure 2.5.a of EID-B)

3 SYSTEM CONTEXT: DPU INTERFACES

XMM/OM UM PART1B-DPU 23

Knop Allve

Fraer & Sy
I R b
- OM 2 ' 1 |
: Power Supply |
| ViMoo Electronics |
| gingle + 5.5, + & comerter |
| Mo Rstay :
| bV |
_— |
o | | instumentContrdl | ** [Data Processing |

1 Electronics Electronics | Detector Data
DB Fower | 17500 Bystam (MA31 750 Tl 4 x DSPSENO . i
302 Kiyts SRAM "l 11 Moyie SRAM |
: B 1 |
| S ! KB

: - |
KB 2 |

Figure 8: Context and electrical interfaces of the DPU (here referred to as the Digital Processing Electronics)

within the DEM (Figure 2.5.c of EID-B)

4 FUNCTIONAL DESCRIPTION OF INDIVIDUAL TASKS AND TASK CONTROLXMM/OM UM PART1B-DPU 24

4 Functional Description of Individual Tasks and Task Control

4.1 Design Method

The DPU software is written in assembly language and C. The “science level” tasks are written in C to
simplify software development and maintenance. Time-critical functions and the underlying operating system
supporting the C environment are written in assembly language.

The DPU software can be compiled in a “simulation mode” which runs on a UNIX workstation. For details
on running simulations, see the document, “XMM Optical Monitor DPU Simulation User’s Manual” (XMM-
OM/PENN/ML/0002). This simulation software has been developed for OM team internal use and it not
part of the flight software delivered as an item. This documentation refers to the flight code implemented
on the DPU flight hardware.

The following sections describe the function and operation of the White, Red and Blue DSP software.

4.2 White DSP Software
The White DSP software is divided into two areas:

1. The operating system known as DPUOQOS;

2. The White science software.

The DPUOS is primarily involved with the running background tasks involved with the DPU operation such
as routines for accessing memory and communication within the DPU and with the ICU.

The White science software routines are the main science functions of the DPU. These include guide star
acquisition and tracking, setting up of memory, science and detector windows, engineering mode routines
and delivery of DPU processed data. The White DSP Science software comprises a number of swap units,
which are loaded and unloaded from White DSP local memory dynamically by the DPUOS. Each swap unit
performs a particular task required for science analysis.

The layout of the White DSP software is shown in Figure 9.

4.2.1 DPUOS:white.asm

Type: Assembly routine running on White DSP (part of DPUOS).

Function: The function of this code is to perform system initialisation, provide interrupt code for the White
DSP (Interrupt Service Routines or ISRs) and contains C-callable functions that have been written in DSP
assembly language for maximum efficiency.

white.asm provides the following functionality:

1. Initialisation routines

Bootstrap loader: Upon removal of the Reset signal (generated on the Arbiter board) the the white
processor copies Bootstrap Loader from Global ROM into Local RAM.

The boot_flight () routine is called from do_00() (in cwhite.c) and is used to load the DPUOS

flight code from Global Program Storage RAM onto Local RAM and execute that code. Forward
Error Correction is used in the loading of code.

2. Interrupt vectors

white.asm is responsible for initialising the interrupt vectors for the White DSP. For the WhiteDSP
the interrupt vector table exists at the beginning of Local Memory, an consists of a series of jump
commands that are executed upon triggering of an interrupt. The interrupts and their function are
summarised in Table 1.

4 FUNCTIONAL DESCRIPTION OF INDIVIDUAL TASKS AND TASK CONTROLXMM/OM UM PART1B-DPU 25

Interrupt Memory Address Action taken on interrupt

F__start $0000 Initialises white processor when a reset or cold boot is performed.
Stkerr $0002 Invoked when a stack error occurs

Trace $0004 Trace Interrupt (currently not used)

Swi $0006 Software interrupt (currently not used)

BUSIO $0008 A periodic interrupts (~ lms) that performs checks related to the

Global bus. This includes checking whether the bus needs to be
given up (if WhiteDSP is the klingon).

TimeSync $000A Performs checks to verify the synchronisation of DPU clock with
the spacecraft clock.

ssirx $000C SSI receive data - accumlates incoming SSI words until a complete
message has been recieved.

essirx $000E Flushed received SSI words from incoming message when an alert
is detected.

ssitx $0010 SSI transmit data

essitx $0012 If an SSI transmitter underflow error occurs this interrupt is called,
causing a system reset.

SCIRec $0014 No longer used

ESCIRec $0016 No longer used

SCIXmit $0018 SCI Transmitter interrupt — manages the transmission of messages

to the Red and Blue processors via the SCI interface. After the
messages have been sent the SCI Transmit hardware is switched
off.

Table 1: Summary of interupts and their function for the White DSP.

3. Forward Error Correction

Provides checking for and fixing of corruption in Flight code, and is used when the flight code is loaded
into local RAM. When a correction cannot be performed for any reason an error will be issued.

4. Communication between DSPs and ICU

The SCIHbeatOutput () function verifies the correct operation of enabled DSPs by sequentially re-
questing a standard reply from each enabled DSP. The C-callable command sci_command() format
and buffers messages to be sent to Red or Blue processors, turns on the SCI transmit hardware.

5. Memory access routines

A number of routines to access global memory are implemented in white.asmread n_zero_sw_int_array()
is a C-callable routine that to reads and then zero out sections of Global memory (currently unused).
write_command_int_array(), that writes a block of Local RAM to Global RAM. white.asm also
provides the functions read global() and write_global().

-4¢—— DPUOS IDLE —

4 FUNCTIONAL DESCRIPTION OF INDIVIDUAL TASKS AND TASK CONTROLXMM/OM UM PART1B-DPU

WHITE DSP SOFTWARE

o1 o O ol @ ol ¢
O olol gl eglelo|lz|lolal|8lel|s]c9°
N o) = 0 T) 0 L Q T < ~
28| 2|d|¢e|8|2|e|e[E|q]=2]E|8
S 2|3l z|a| 2|88z |Y|c¢E
E S 9 O X < | & o O O O o r =
= | | | L] © | | 2| z | o | m !
N - - | = S o 0, - I Il o)
7 ool g5 S |0 21 %2333 °
7 n @ " 0
n
WHITEDSP.C
(D: WHITE_CRTO56Y.ASM
- CWHITE.C | OO?/
L m o l___l_________ %\:\a ________
ﬁ I O <\
) WHITE.ASM PR

Figure 9: Symbolic layout of the White DSP software. See text for details.

26

4 FUNCTIONAL DESCRIPTION OF INDIVIDUAL TASKS AND TASK CONTROLXMM/OM UM PART1B-DPU 27

4.2.2 DPUOS:white _crt056y.asm

Type: Assembly routine running on White DSP (part of DPUOS).

Function:white_crt056y.asm defines the location of all global variables used by both the C and assembly
code. It also defines the location of the stack, the size of usable memory, and a few other variables used by
C memory management, tools.

4.2.3 DPUOS:cwhite.c

Type: C routine running on White DSP (part of DPUOS).

Function: This file contains basic White DSP functions that are easiest implemented in C. The main()
routine simply calls whitedsp(), which is part of the White science software (see below). An ICU command
interpreter routine is part of this module.

The supported tasks in this swap unit are INITIALIZE, INIT_EXP, ACQUIRE_FIELD, CHOOSE_GUIDE_STARS,
TRACK_GUIDE_STARS, COMPRESS_DATA, ENGINEERING,
FINISH_FRAME. FLUSH_COMPRESS, SWITCH_PING_.PONG, HDR_MANAGER, GLOBAL_ZERO, Q_ALERT
and DELAYED_Q_ALERT. The five tasks exclusive to cwhite.c are described briefly below. The other tasks
are described under whitedsp.c.

SWITCH_PING_PONG

This function is for switching the current Blue frame memory from ping to pong or from pong to ping.
BLUE DSPs send events to this frame (ping or pong) This function is used for tasks of ACQUIRE_FIELD,
CHOOSE_GUIDE_STARS, and TRACK_GUIDE_STARS. Blue frame swap the address to switch the Small Word
Memory between ping and pong, depending on the values of the current frame.

HDR_MANAGER

Used to add to PROC Memory the DPU header such as address, ysize, yskip (bb), xsize, xskip (aa) and so
on.

GLOBAL_ZERO
This function sets the PROC area to be zero.
Q_ALERT

This function is to give out an “alert message” if an error occurs during execution of tasks. The message
includes the type of error, length and the format possible with string format. Since the flight code could
not print out the error message directly, the Q_ALERT function is used to symbolize the errors to help
tracing problems. The error message is summarized in PROTOCOL document (MSSL). This function is
used particularly for tasks of WHITEDSP, CHOOSE_GUIDE_STARS and ENGINEERING.

DELAYED_Q_ALERT .

This function calls a subroutine Q_ALERT in cwhite.c and used for whitedsp, CHOOSE_GUIDE_STARS and
ENGINEERING. Tt gives alert message, after making a loop 12000 times.

Subordinates:
The cwhite.c code includes setup.h and cwhite.h. Its main() routine simply calls whitedsp().
Dependencies:

Although the main () routine simply calls whitedsp (), other functions in this module are called from various
places in the White science software and from assembly portions of DPUOS.

Interfaces:

This unit includes setup.h and cwhite.h.

4 FUNCTIONAL DESCRIPTION OF INDIVIDUAL TASKS AND TASK CONTROLXMM/OM UM PART1B-DPU 28

4.3 White Science Software

As described earlier, at power-on, the White DSP is in the DPU Ready state. Upon command by the ICU,
the DPUOS is loaded with full functionality of command interpreter and I/O routines. At the end of the
DPUOS loading, the base White science codes are loaded and the processing control is handed over. All
other DPUOS communication operations are interrupt-driven.

The White science codes are organized in a hierarchy. At the foundation is the code whitedsp() performing
the traffic control. It manages a number of tasks, which are groupings of series of processing functions.
The file whitedsp.c contains the function whitedsp() and the codes for each task. As stated, the codes
contained in the file whitedsp.c, including whitedsp() and the task codes, are loaded after DPUOS load
and remain resident through normal science operation.

Since the on-board memory is limited, the processing functions in the tasks, which are extensive compu-
tational codes, are further grouped into discrete software modules called swap units. In contrast to the
whitedsp() and the task codes, individual swap units are loaded/executed (serviced by a custom loader
in the DPUOS) sequentially following the “script” in the task codes. Once a swap unit is completed, its
presence in the White DSP on-board memory is lost, overwritten by the next swap unit.

A typical sequence of operation is as follows. The ICU, based on a preloaded exposure command sequence
from the ground, issues a command to the DPU. The DPUOS command processor, in response to the
command, changes one of the system parameters to communicate with the high-level science codes. In
some cases, the system parameter is static which affects subsequent exposures only when these parameters
are used. In a special class of commands for dynamic control, the “task ID” parameter is changed by
the command processor. The whitedsp() code, upon detecting the new task ID, initiates the task which
loads/executes the predetermined sequence of swap units. Upon return from the task, the whitedsp() enters
the idle state/task ready for the next task or initiates the next task automatically.

It should be especially noted that the timing of major operations of the data acquisition and processing, such
as exposure start/stop and tracking frame ping/pong swapping, is controlled by the DPU. Under normal
operations, the ICU will turn on the MIC detector, or reconfigure the detector window configuration, and
leave the MIC detector on indefinitely. A fixed length exposure is controlled by enabling/disabling the
blue DSP for data acquisition event processing. The enabling/disabling of blue event processing is in turn
controlled by the White DSP through the SCI interface. The codes that control the issuance of these on/off
commands are residing in individual task codes. For example, a 10 second exposure is controlled by the
task codes through the following sequence: send an on command to the Blue DSP(s), wait 10 seconds (a
loop checking the advances of clock), then send an off command. Similarly, the switching of the ping/pong
memory in the normal tracking sequence is also done by the task codes.

A limited number of “shared variables” are retained in the DPU, not swapped in and out of on-board
memory) because they are frequently accessed by more than one swap unit and/or the OS. We distinguish
between static variables, which change rarely if at all, and shared variables which change often as processing
occurs. The static parameters are software configuration constants. The information transfer between swap
units and/or the OS is through either the shared variables resident in local memory or the global memory.

4.3.1 whitedsp.c

Type: C routine running on White DSP.

Function The file whitedsp. c contains three parts: whitedsp(), task routines, and auxiliary routines (plus
code used only in simulation).

As stated, whitedsp() handles the traffic control. It is simply an infinite loop that continuously checks
the value of the dynamic variable task_id. Depending on task_id, the whitedsp() code executes the
appropriate task routine. The currently supported tasks and brief descriptions are listed below. For more
details, see the descriptions of the swap units invoked by the tasks.

IDLE

4 FUNCTIONAL DESCRIPTION OF INDIVIDUAL TASKS AND TASK CONTROLXMM/OM UM PART1B-DPU 29

This task is actually a “state” (see section 2.6). It does nothing but wait for the task_id variable to change.
When task_id does change (by command from the ICU), the indicated task routine is invoked. Several of
the tasks reset task_id to IDLE when they have finished, returning control to this state. There is no other
code associated with this state.

ABORT

This task is a place holder for emergency exit. Detailed operations are TBD. Currently its actions are to
issue a DA_DPU_ABORTING alert, to disable Blue image and fast mode event collection, and to set the task_id
to IDLE. It is invoked in a few ways: by an IC_ABORT DPU command from the ICU; in the whitedsp() loop
if an invalid task_id is seen; and by the TRACK_GUIDE_STARS and FINISH_FRAME tasks if task_id is not
TRACK_GUIDE_STARS or FINISH FRAME, respectively, at the end of their operations. This task calls one swap
unit: DPUABORT.

INITIALIZE

The purpose is to initialize all parameters to default values. Note that INITIALIZE is not a formal task. It
is distinguishable from the other tasks in that it normally will be run only at DPU boot-up, or if the White
DSP is reset. It is invoked by an IC_INIT DPU command from the ICU, and sends a DA_EQOT_INIT DPU alert
when finished. This task calls one swap unit: INITIALIZE.

INIT_EXP

This task is run immediately before field acquisition. Its purpose is to prepare the DPU to obtain the
acquisition frame by setting up the appropriate detector window configuration, which is also used when
obtaining the reference frame (see the CHOOSE_GUIDE_STARS task below). It is invoked by an IC_INIT_EXP
command from the ICU, and sends a DA_EOT_INIT EXP alert when finished. This task calls one swap unit:
INIT_EXP.

ACQUIRE_FIELD

This task determines the relative offset between the commanded satellite pointing and the actual pointing.
First, a short exposure (nominally 10 seconds), called the acquisition frame is obtained, typically with the
filter wheel in the V filter position. That image is scanned for bright sources. A double iterative procedure is
performed to 1) identify the observed bright stars with the previously up-linked absolute guide stars, and 2)
calculate the relative offset. A robust criterion is used to determined the convergence of solution. The final
product consists of three numbers giving the translation offset (acquisition offset) and roll angle between
actual and commanded pointing. If field acquisition fails, the AO values are set to zero.

This task is invoked by the IC_ACQUIRE FLD command from the ICU. After the acquisition frame has been
obtained, it sends a DA_DONE_FLD DATA alert. When finished with its field acquisition calculations it send-
s a DA_EQOT_ACQUIRE FLD alert. It calls the following swap units: CALBGD, CALDRFT, DELIVERDATA,
MAKEAGS_ID, RESTORE_STARS, and SCANBS.

CHOOSE_GUIDE_STARS

This task serves three major purposes. It: 1) controls acquisition of the reference frame; 2) selects guide
stars for tracking during the exposure which follows; and 3) sets up the the appropriate window and memory
configuration. A nominal ~ 10 second frame is taken (again controlled by the task code itself) with the
observer-selected filter. Asin the ACQUIRE_FIELD task, bright sources in the reference frame are scanned and
analyzed. The analysis gives a number of “quality” indicators for the bright sources. Based on these quality
indicators and other global considerations such as star crowdedness, a number of guide stars, nominally 10,
are selected. These star positions are saved for subsequent tracking. Based on the user-supplied /requested
window configuration, the selected guide stars and the acquisition offset, a window/memory management
code configures detector windows to coordinate data acquisition, memory windows to store acquired raw
data, and science windows to specify on-board scientific data processing. The user-requested science window
coordinates are shifted to account for the acquisition offset. The memory windows are also shifted, but
by an amount as close to the AO as possible while obeying particular memory window restrictions. Those
restrictions are: 1) that memory windows’ BLC coordinates be multiples of 16, and 2) that memory window
sizes also be multiples of 16. These restrictions are imposed due to the requirements of event centroiding.

4 FUNCTIONAL DESCRIPTION OF INDIVIDUAL TASKS AND TASK CONTROLXMM/OM UM PART1B-DPU 30

In the event of guide star selection failure, i.e., too few stars meeting the quality criteria, the code currently
takes no special action. It has been proposed to proceed with the exposure with the tracking calculations
and subsequent shift in the shift-and-add process disabled. In this case, effective loss of spatial resolution
may be apparent. This has not yet been implemented.

If no user-defined windows are validated, there is no point in proceeding with an exposure. In this case, it
has been proposed that the DPU attempt to set up a default window configuration and proceed with the
exposure. This has not yet been implemented.

This task is invoked by the IC_CHOOSE_GS command from the ICU. When finished, it sends a DA_EOT_CHOOSE_GS
alert. It calls the following swap units: CALBGD, DOWINDOW, DELIVERDATA, GETREF, RESTORE_STARS,
SCANBS, and SCANGS.

TRACK_GUIDE_STARS

This task is invoked by an IC_TRACK_GS command from the ICU at the beginning of an exposure (at which
point it sends a DA_BEGOF _EXP alert), and subsequently by the FINISH_FRAME task if the current exposure
is not complete. It calculates the drift offset and roll of a just-completed tracking frame relative to the
reference frame. This is done by first calculating the position of the guide stars in the tracking frame
in question. Then a maximum likelihood solution is found by comparing the guide stars’ calculated and
reference position. Once the translation offset has been calculated, this task commands the Red DSP into
its RED_ACCUMULATE_IMAGE task to perform the shift-and-add operation for the image mode science
windows. Then task_id is set to COMPRESS_DATA and this task exits. After completion of an exposure, but
before calculation of the tracking solution for the final tracking frame, it sends an DA_ENDOF_EXP alert. This
allows the ICU to terminate detector integration and to move the filter wheel if necessary. This task calls
the following swap units: CALBGD, CALDRFT, DELIVERDATA, LOCATEGS, and RESTORE_STARS.

COMPRESS_DATA

This task is not executed in response to a command from the ICU. Rather, it is automatically invoked at
the end of TRACK_GUIDE_STARS. It invokes the COMPRESS swap unit to compress previous exposure data
which have been placed in the compression queue. Only the DD data types are compressed. Compression is
done a block at a time in a loop so that this task can keep track of the progress of the current tracking frame.
When the current tracking frame time is nearly complete (within COMPRESS_TIME_BUFFER milliseconds of the
end of the current tracking frame), control passes out of the loop so the status of the shift-and-add operation
can be monitored. As soon as shift-and-add is done the task_id is set to FINISH_FRAME and this task exits,
allowing FINISH_FRAME to run. This procedure ensures that a new tracking frame will not be started until
data for the previous tracking frame have been co-added into the accumulating image. This task calls the
following swap units: COMPRESS.

FINISH_FRAME

This task is not executed in response to a command from the ICU. Rather, it is automatically invoked at
the end of COMPRESS_DATA. This task waits until the Red DSP has finished the shift-and-add calculation,
at which time memory for another tracking frame becomes available. It then then checks to see whether the
exposure is complete. If it is, the task calls either the DELIVERDATA or the SUBMIT_CMPRSS_Q swap unit
to place housekeeping data and the accumulated image data on the data queue, sends a DA_COMPLETE _EXP
alert, sets task_id to IDLE, and exits. If the exposure is not complete, the task waits until the current
tracking frame time has expired, sets task_id to TRACK_GUIDE_STARS and exits so that the next tracking
frame will be obtained. This task calls the following swap units: DELIVERDATA or SUBMIT_CMPRSS_Q.

FLUSH_COMPRESS

This task is executed in response to an IC_FLUSH_CMPRS command from the ICU, and sends a DA_EQT_FLUSH_CMPRS
alert when finished. Because compression of exposure n of a pointing will occur during shift-and-add opera-
tions for exposure n + 1, this task will normally be invoked only after the last exposure of a pointing. [What
about engineering mode data?] This task calls the following swap units: COMPRESS.

ENGINEERING

4 FUNCTIONAL DESCRIPTION OF INDIVIDUAL TASKS AND TASK CONTROLXMM/OM UM PART1B-DPU 31

This task sets up the window configuration required for the particular engineering mode function requested,
and issues ENABLE_EVENTS and DISABLE_EVENTS to the Blue DSPs to control the effective exposure time.
There are seven engineering modes. Modes 0, 1, and 2 are for delivery of raw MIC data (no memory address
calculation and increment) for both, Blue 1, and Blue 2 DSPs, respectively. Mode 3 is for obtaining M,N
data for calculation of a new centroiding look-up table (LUT). Mode 4 is for obtaining a full frame image at
high resolution. Mode 5 also acquires a full frame at high resolution, but processes it to determine whether
the current LUT is good. Mode 6 is for obtaining data on intensifier characteristics. This task is executed
in response to an IC_ENBL_ENG command from the ICU, and sends a DA_EOT_ENG alert when finished. This
task calls the following swap units: DELIVERDATA, and ENGINEERING.

Each of the tasks described above, with the exception of IDLE, is contained in a separate routine in the
whitedsp.c file. In addition to invoking individual swap units in sequence for data processing, high-level
control codes such as timing, SCI commanding of the Blue DSP, data I/O queueing to the ICU, and sending
time-critical high-priority alerts to the ICU are all contained in the task codes.

In addition to the alerts specified in the task description above, each task optionally (if verbose logging is
enabled) sends “end of swap unit” alerts (DA_EOS_* where * is a wildcard for the swap unit names).

In addition to whitedsp() and the task routines, the file whitedsp.c also includes several auxiliary codes
that are used by a number of task codes and/or swap units. These include a manager for headers for
production data, a routine to zero out large area of memory, a routine to switch ping pong tracking frame.
And a suite of memory access wrapper codes described below.

The whitedsp.c code “includes” a file global_access.c containing a full suite of C wrapper codes for
memory access. As a result of the system design for the global memory access shared among four processors,
the read/write access of the global memory needs to be done explicitly in the science codes, with careful
timing considerations. There is also a limit to the number of read/write operations that the code can perform
at a time such that a single processor does not tie up the available global memory access. (The case of a
processor tying up the memory access for whatever reason is considered a fault condition trapped by the
DPUOS and the DPU will undergo a hardware reset.) To facilitate memory access and code management, the
global memory access are provided in a suite of C-callable codes. These codes follow the naming convention
of [read/write][sw/bw/proc|[int/float](.array) and are contained in the file global_access.c. The
global memory access codes are in fact C wrapper codes which check for the validity of requested range for
memory prior to invoking a low-level code engine written in assembly for the memory access.

Subordinates:

The whitedsp.c code includes files setup.h and global_access.c. When compiled for simulation on a Sun
platform, it also includes shared_variables.c, sun_util.c, and shared_io_functions.c.

Dependencies:

The whitedsp.c code is the main traffic control code for the White DSP. The main task functions are part
of this source module. The high level function, whitedsp(), is called from the main () routine in cwhite.c.

The White DSP traffic control code is invoked thus: whitedsp() ;. In nominal operation it will never return
to the calling routine.

4.3.2 shared_io_functions.c

Type: C code written for white, red, and blue DSP.

Function: This swap unit reads and writes the White DSP local RAM file with standard comment header,
shell (? FIXME) for Red local RAM. This unit has following functions.

read_shared_data() - opens the local RAM file for reading.
write_shared data() — opens the local RAM file for writing.
global ram io() — read from the global RAM file.

4 FUNCTIONAL DESCRIPTION OF INDIVIDUAL TASKS AND TASK CONTROLXMM/OM UM PART1B-DPU 32

proc_ram io() - readsfrom the PROCRAM file. This will be used in mutual exclusion with global ram _io.
local ram io() - reads the local RAM file.

blue_local ram io() — reads from the BLUE local RAM file.

red local ram io() - reads from the RED local RAM file.

Interfaces:

4.3.3 shared_variables.c

Type: C code written for White DSP.

Function: Declaration of White DSP local RAM variables such as address of frame, type of filter on blue
detector, field acquisition, shift-and-add status on Red DSP, data delivery, variables assigned to symbolic
constants that are defined in white_shared_variables.h, global variables for compression. The variables that
are changed by the hardware, such as real-time clocks, interrupts and DPUOS command processor are also
defined. The unit writes all header information for house keeping such as observation date, and exposure
time.

4.3.4 su_calbgd.c

Type: C code written for the White DSP swap unit CALBGD.

Function: This swap unit calculates the background for a tracking frame. It samples data from three
distinct regions, equally spaced in the previous tracking frame (stored in ping or pong), and calculates the
average number of counts per pixel. Ths average is then used to set up the threshold level used in the stellar
image construction function. This sampling is performed independent of the window dimensions, which is
optimized for efficient use of the global bus.

Three major step executions can be described as the following: i) When the task is for ACQUIRE_FIELD
or CHOOSE_GUIDE_STARS, its frame is set to full frame to determine the number of pixels in the frame,
based on which number of pixels per block and the separation between blocks are determined. ii) After
initialize address, counters and array access parameters in previous frame, accumulate counts as a sum.
iii) The threshold level of star recognition is set to be the number of pixel block multiplied by the average
number of counts per block.

Interfaces:

4.3.5 su_caldrft.c

Type: C code written for the White DSP swap unit CALDRFT.

Function: This swap unit calculates the best fit values AX, AY, and sin © needed to make the observed
“current” positions of the guide stars or absolute guide stars agree with their nominal positions. Sporadic
outliers in calculated guide star positions are handled/eliminated through iterative assignment of statistical
weighting depending on the star’s calculated position and calculated drift (see XMM-OM/PENN/TC/0004).

The current coordinates are assumed to be related to the nominal coordinates by a rotation/translation
transformation as if, relative to the detector frame of reference at the time of observation, the detector needs
to undergo a translation by AX pixels in x and AY pixels in y, then a rotation by angle © (assumed to be
small) about a roll center at (Xp, Yp) in the shifted coordinates, for consistency with the nominal coordinates.
Thus,

[(Xcurrent - XO) = (Xnominal - XO) cos©® — (Ynominal - YE)) sin® + AX]

and
[(Y;urrent - YO) = (Xnominal - XO) Sin@ + (Ynominal - }/0) COS® + AY]

4 FUNCTIONAL DESCRIPTION OF INDIVIDUAL TASKS AND TASK CONTROLXMM/OM UM PART1B-DPU 33

Note that X, and Y are not fitted parameters; they are constants which give the location of the rotation
axis in the detector field of view.

The best fit parameter values are the values that minimize the sum of the squared differences between the
observed star positions and the “current” positions calculated using these transformation equations.

In the ACQUIRE_FIELD task, a subset of the absolute guide stars consisting of those identified by MAKEAGS_ID
are used in the calculation. The nominal coordinates are those of the (identified) absolute guide stars specified
relative to the commanded satellite orientation, and the current coordinates are those of the corresponding
stars as observed in a field acquisition reference frame (see su_makeags_id.c). Equal weights are assigned
initially to the stars. The resulting parameters AX, AY, and sin® give the “absolute” transformation
needed to center the science, memory, and detector windows on various targets.

In the TRACK_GUIDE _STARS task, the nominal coordinates are those of a set of selected guide stars as
observed in the initial reference frame, and the current coordinates are those of the same stars as located
in a subsequent tracking frame. Only guide stars of “good quality” are used. (Note that, while SCANGS
swap unit selects a set of guide stars which initially are “good,” there is no guarantee that a star will remain
“c0od” in all subsequent tracking frames). The weight assigned initially to each of the guide stars is the
number of counts in the psf recorded during the reference frame. The resulting parameters (AX, AY) give
the “shift” required to compensate for satellite drift (the roll is not used for this purpose) to accumulate an
image for a time longer than that over which significant drift occurs (the so-called “shift-and-add” function).

AX and AY are determined assuming that the roll is small but possibly non-zero. Specifically, it is assumed
that cos® ~ 1, in which case

[Xcurrent ja Xnominal - (Ynominal _YE)) sin © + AX]

and
[Ycurrent =~ Ynomz’nal + (Xnominal _XO) sin © + AY]

In the shift-and-add function (su_saa) the roll is neglected altogether; there it is simply assumed, in effect,
that
[Xcurrent jad Xnominal + AX]

and
[Yeurrent = Ynomina + AY]
Subordinates:
This module includes setup.h.
Dependencies:
The swap unit CALDRFT is used in the tasks ACQUIRE_FIELD and TRACK_GUIDE_STARS.
Interfaces:

The CALDRFT swap unit is invoked thus: return_status = execute (SWAP_CALDRFT);
where #define execute load is in effect in the flight version.

This swap unit requires about 1 DPU cycle, and about 70 words of DSP RAM.
See XMM-OM/PENN/TC/0004.03 and XMM-OM/PENN/TC/0021.01.

4.3.6 su_compress.c

Type: C code written for the White DSP swap unit COMPRESS.

Function: This swap unit is used to compress the DD data types so that the data may be transmitted to
the ground within the OM telemetry allocation. It is used in the COMPRESS_DATA task.

4 FUNCTIONAL DESCRIPTION OF INDIVIDUAL TASKS AND TASK CONTROLXMM/OM UM PART1B-DPU 34

If there are entries on the compression queue, the data are compressed using the Variable Block Tiered
Word Length (VBTWL) algorithm, which is described in section V of “DPU Processing for XMM/OM,
Tracking and Compression Algorithm, Document 3,” (XMM-OM/PENN/TC/0004). Compressed data are
then placed on the regular data queue for delivery to the ICU.

Briefly, the compression algorithm works as follows: The two basic phases are decorrelation and encoding.
Decorrelation means taking out any “predictable” or “repeatable” portion of the data in an image. For
OM data, this can be viewed as the mean background level. The residual image, which consists largely of
Gaussian excursion from the background level (standard deviation o) and outliers due to stellar images.
Encoding with VBTWL allows us to encode the bulk of the distribution (the many background pixels)
with few bits per datum, and the relatively small number of outlier pixels (pixels in star images) requiring
more bits per datum. We aim to group 3¢ into the lowest tier (99% of background pixels). Outliers, the
remaining background and stellar pixels, will be grouped in the next two tiers.

The total volume of compressed data for an image mode window will be approximately
ngny logy (k(N/nzn,)'/?) bits, where N is the total number of counts in the window, n, and n, are the
z and y dimensions of the window in pixels, and k is roughly 6 in the scheme outlined above. For a typical
1024x1024 window (binned to 512x512) using a U filter, N will typically be about 4 million counts in a
1000 second exposure. More than two thirds of that will be background. This results in somewhat less than
1 million bits. At 8 kbit s~1, the compressed data can be transmitted in about two minutes.

Subordinates:

This module includes setup.h, vbwtl.h, and vbtwl.def.

Dependencies:

The swap unit COMPRESS is used in the tasks COMPRESS_DATA and FLUSH_COMPRESS.

Interfaces:

The COMPRESS swap unit is invoked thus:
return_status = execute (SWAP_COMPRESS);
where #define execute load is in effect in the flight version.

4.3.7 su_deliverdata.c

Type: C code written for the White DSP swap unit DELIVERDATA.

Function: This swap unit is a collection of data delivery routines for all data types. Through the global
variable data_delivery, the invocation of this swap unit will construct and format the appropriate data
sets for delivery to the DPUQOS data output queueing system. Note that DD data types will normally not
be handled by DELIVERDATA, but will be placed on the compression queue by SUBMIT_CMPRSS_Q and
ultimately placed on the data queue by the COMPRESS swap unit.

For priority data, the data are copied into a predetermined area from where the DPUQOS pick them up and
sends them to the ICU, with medium priority. There can only be one priority data set being sent at a time.
If there is an existing priority data set, then the processing will wait until the previous data set is fully sent
allowing the current priority data set to be inserted into the queue.

For production data, the data remain in situ with a separate header constructed by the header manager.
The queue for production data is actually a pointer management system that actively alerts the ICU of the
presence of production data. The ICU, upon being alerted of pending production data, will request the
data from the DPU. The DPU responds by sending the requested number of data blocks. In the current
implementation, the swap unit calls a DPUOS-provided C routine data_queue (). This routine simply inserts
the appropriate pointers to the queueing buffer. The actual transmission is done as a low-level interrupt-
driven function, coded in assembly. The data transmission assembly code will zero out the memory where
the production data were located after transmission.

Subordinates:

4 FUNCTIONAL DESCRIPTION OF INDIVIDUAL TASKS AND TASK CONTROLXMM/OM UM PART1B-DPU 35

This module includes setup.h.

Dependencies:

The swap unit DELIVERDATA is used in the tasks ACQUIRE_FIELD, CHOOSE_GUIDE_STARS,
TRACK_GUIDE_STARS, FINISH_.FRAME, and ENGINEERING.

Interfaces:

The DELIVERDATA swap unit is invoked thus:
return_status = execute (SWAP_DELIVERDATA);
where #define execute load is in effect in the flight version.

4.3.8 su_dowindow.c

Type: C code written for the White DSP swap unit DOWINDOW.

Function: This is a swap unit, used only in the CHOOSE_GUIDE_STARS task; the purposes are (a) to
define memory, science, and detector window parameters corresponding to user-specified science and memory
windows; (b) to establish up to 10 (MAX_TRACKING WINDOWS) science windows and, if necessary, additional
memory and detector windows corresponding to a set of guide stars for tracking; and (c¢) manages Big-word
memory for DPU processed data and telemetry storage.

First the user-specified windows are shifted to take the estimated error in absolute pointing into account (the
window coordinates specified by the observer are relative to the commanded spacecraft pointing direction,
i.e., the acquisition offset). If the acquisition offset shift would move a window partially off the detector area,
it will be resized accordingly, i.e., the portion shifted off the detector will be trimmed. Any memory window
trimmed to less than 32 detector pixels in or y will be rejected.

Memory window BLC coordinates and sizes must be multiples of 16. This is required to facilitate the photon
even centroiding algorithm. As a result, memory windows may not be shifted by exactly the amount of the
acquisition offset. The difference may be as much as 8 pixels in x and y. Science windows will be shifted
by the amount of the acquisition offset. Thus, to avoid rejection of science windows, their corresponding
memory windows should provide “buffers” of at least 8 pixels. Larger buffers are recommended to allow for
migration of science windows within memory windows due to spacecraft drift during the exposure.

The validity of user-specified windows is checked (e.g., memory windows must be non-overlapping and
must fit in the memory available), science windows are matched to the appropriate memory windows, and
detector windows are established to cover the memory windows. (Note: some of the validation functionality
would become unnecessary if a suitable ground-based window configuration program were made available to
observers.)

The quality of an otherwise good guide star is set to CROSS_TKW_QUALITY (a value recognized as “bad”)
if the square memory window, of size TRACKING_MMW_DIM (64 pixels), required to enclose it crosses a valid
user-specified memory window. Any other potentially good guide stars to which science, memory and
detector windows are not assigned (e.g., because the number of good guide stars chosen by SCANGS exceeds
MAX_TRACKING_WINDOWS) are given a quality value 2 x CROSS_TKW_QUALITY, which is also interpreted as “bad.”

Windows are subject to the following additional constraints:

e The sum of memory usage of all memory windows and fast mode (processed) data should not exceed
X 16-bit words (X is TBD, should be between 2 to 4 M).

e The sum of memory usage of all image mode accumulation data should not exceed Y 24-bit words (Y
is about 0.5 M, TBC), and

e The maximum number of science windows allowed is 16, though this is somewhat arbitrarily set. The
maximum number of memory windows is also set at 16. The number of detector windows on either
detector is set by the detector interfaces at 15 for the MIC detector. In full frame engineering mode, 16
512 x 512 detector windows will be required. Special setup for this case is done by the ENGINEERING
swap unit.

4 FUNCTIONAL DESCRIPTION OF INDIVIDUAL TASKS AND TASK CONTROLXMM/OM UM PART1B-DPU 36

e Detector windows may not exceed 512 pixels in either dimension. Thus, an 800x800 memory window
would require four detector windows of the following sizes: 512x512, 288x 288, 512x 288, and 288x512.

e Memory windows may not overlap.

Subordinates:

This module includes setup.h.

Dependencies:

The swap unit DOWINDOW is used in the task CHOOSE_GUIDE_STARS.
Interfaces:

The DOWINDOW swap unit is invoked thus:
return_status = execute (SWAP_DOWINDOW);
where #define execute load is in effect in the flight version.

Global RAM access requirements for this swap unit are:

Up to 258 words to read user specified window data

Up to 258 words to write memory and science window data.

Up to about 65 (TBD) words to write detector window data

A few additiona words if a log is kept

This amounts to 2 or 3 DPU cycles.
This swap unit requires approximately 450 words of DSP RAM.

See related document on observing mode requirements.

4.3.9 su._dpuabort.c

Type: C code written for the White DSP swap unit DPUABORT.

Function: This swap unit is a place holder for emergency exit handling, If this swap unit doesn’t do
anything, then returns to the calling routine with status = 0.

Subordinates:

This module includes setup.h.

Dependencies:

The swap unit DPUABORT is used in the tasks DPUABORT.
Interfaces:

The DPUABORT swap unit is invoked thus:
return_status = execute (SWAP_DPUABORT);
where #define execute load is in effect in the flight version.

4 FUNCTIONAL DESCRIPTION OF INDIVIDUAL TASKS AND TASK CONTROLXMM/OM UM PART1B-DPU 37

4.3.10 su_engineering.c

Type: C code written for the White DSP swap unit ENGINEERING.

Function: This swap unit performs the window setup for the five engineering modes, and writes them
into PROC memory so that engineering data are written into known memory locations. It is used only in
the ENGINEERING task. For the centroiding LUT confirmation mode it performs necessary processing of a
full-frame high resolution frame to produce the required 8 x 8 arrays for each of 16 512 x 512 sectors of the
detector (see section 2.7.4). In the engineering modes, the ICU dictates the portion of the detector to use;
the output engineering data will be compatible with the window parameters defined here.

Window parmaters are determined for the address which equation is given in section 3.7.3 of XMM-OM User
Manual Part 1A - Experiment On-Board Software - ICU (XMM-OM/MSSL/SP/0005.1). The parameters
of window setup, number of window, offset from the window (aa), and size of window (bb) determine the
address of each mode.

Mode 0, 1 and 2 (ENG_RAW_DATA B1 and ENG_RAW _DATA B2): from the event MIC file, the output
has the same information as the input but with a format of positions of x, and y, and number of photons.

Mode 3 (CENTROID_LUT_CALC) calculates a set of channel boundaries (9 numbers) scaled by a thousand,
where the channel boundary is boundaries of subpixels. The boundaries of the subpixel are corrected to get
an high quality image, using a look up table of M,N images. M, N images (sub-type data 7) are defined
as a function of the detected counts for a test pixel. The definition of M, N are: M=c-a and N=4b-2a-2c,
where a,b,c are distribution of detected photons over the subjunct pixels. The following four major task are
performed as in order: i) read the M,N image, an input file which is created from electronics, ii) estimate
the histogram of the number of photons for a given value of M/N, and iii) calculate the integrated value of
the photon numbers as the number M/N increases, and iv) based on the final sum of integrated value, each
boundary is adjusted using 1/8 of the final sum value.

Mode 4, 5, and 6: Mode 4 (ENG_FULL_FRAME) creates a full resolution image. The output is 262144
numbers shich can be converted to 2048x128, which of 16 created by 16 windows will make a full resolution
image of 2048x2048 pixel image. Mode 5 (CENTROID_LUT_CONTF) is centroiding confirmation mode. The
centroid look up table confirmation requires a full frame at high resolution, and the detector centroiding
image corresponds to the input image. Mode 6 (ENG_PULSE_HEIGHT) creates output of a height of pulse
obtained by electronics.

Subordinates:

This module includes setup.h. When compiled for use in simulation on a Sun platform, it also includes
sim blue local ram.h. An input file of M, N image is required as an input and the image is obtained from
electronics.

Dependencies:
The swap unit ENGINEERING is used in the task ENGINEERING.
Interfaces:

The ENGINEERING swap unit is invoked thus:
return_status = execute (SWAP_ENGINEERING) ;
where #define execute load is in effect in the flight version.

4.3.11 su._getref.c

Type: C code written for the White DSP swap unit GETREF.

Function: This swap unit, used only in the CHOOSE_GUIDE_STARS task, establishes the roll center for
tracking. There are three possibilities for roll center designation: center of field of view, “center of mass”
amongst guide stars, and user-specified location. The default location is the the center of mass of guide

4 FUNCTIONAL DESCRIPTION OF INDIVIDUAL TASKS AND TASK CONTROLXMM/OM UM PART1B-DPU 38

stars. The locations of guide stars are then adjusted to be relative to the roll center. This saves a little bit
of time in the CALDRFT swap unit.

Subordinates:

This module includes setup.h.

Dependencies:

The swap unit GETREF is used in the task CHOOSE_GUIDE_STARS.
Interfaces:

The GETREF swap unit is invoked thus: return_status = execute (SWAP_GETREF) ;
where #define execute load is in effect in the flight version.

This swap unit reads/writes only a few words from/to global RAM requiring only 1 DPU cycle. It requires
very little DSP RAM.

See XMM-OM/PENN/TC/0004.03.

4.3.12 su_init_exp.c

Type: C code written for the White DSP swap unit INIT_EXP.

Function: This swap unit is called by the INIT_EXP task. It sets up the exposure id and sets up the full
frame, half resolution data acquisition configuration for the Blue DSPs.

Subordinates:
This module includes setup.h.
Dependencies:

The swap unit INIT_EXP is used in the task INIT_EXP, which generally will be run before tasks AC-
QUIRE_FIELD and CHOOSE_GUIDE_STARS.

Interfaces:

The INIT_LEXP swap unit is invoked thus: return status = execute (SWAP_INIT EXP); where #define
execute load is in effect in the flight version.

4.3.13 su_initialize.c

Type: C code written for the White DSP swap unit INITIALIZE.

Function: This swap unit initializes all static variables and shared variables with their respective default
values. It is used to reset all system parameters to working default value and zero out all storage memories.
Some of the default values (e.g., that of frames_per_exposure) may be overridden by command. An alert
is sent to ICU after the completion, in the INITIALIZE task, signaling the readiness of the DPU for normal
science operation. This swap unit will be run once at the beginning of, and not during, normal operation.

Subordinates:

This module includes setup.h.

Dependencies:

The swap unit INITIALIZE is used in the task INITIALIZE.
Interfaces:

The INITIALIZE swap unit is invoked thus:
return_status = execute (SWAP_INITIALIZE);
where #define execute load is in effect in the flight version.

4 FUNCTIONAL DESCRIPTION OF INDIVIDUAL TASKS AND TASK CONTROLXMM/OM UM PART1B-DPU 39

4.3.14 su_locategs.c

Type: C code written for the White DSP swap unit LOCATEGS.

Function: This swap unit, which is used only in the TRACK_GUIDE_STARS task, calculates the locations
of the guide stars in the most recently completed tracking frame. The guide star image is analyzed in the
tracking science windows, based on the guide stars’ last recorded location. This swap unit uses a simplified
version of the image analysis algorithm derived from that used in su_scanbs.c, yielding only the centroid
and brightness of the guide stars. The new locations of the guide stars are saved as the stars’ current
coordinates, to be used by the CALDRFT swap unit.

Subordinates:

This module includes setup.h.

Dependencies:

The swap unit LOCATEGS is used in the task TRACK_GUIDE_STARS.

Interfaces:

The LOCATEGS swap unit is invoked thus:
return_status = execute (SWAP_LOCATEGS);
where #define execute load is in effect in the flight version.

This swap unit reads the following from global RAM: 258 words of window configuration data; about 576
words per star image for 10 stars. Thus, it reads a total of about 6000 words, requiring about 33 DPU
cycles. It writes about 96 words if the guide star coordinates are saved, requiring an additional DPU cycle.
For variables, it requires about 6000 words of DSP RAM.

See XMM-OM/PENN/TC/0004.03.

4.3.15 sumakeags_id.c

Type: C code written for the White DSP swap unit MAKEAGS_ID.

Function: This swap unit, which is used only in the ACQUIRE_FIELD task, identifies the up-linked absolute
guide stars in a list of bright stars generated from the field acquisition reference frame by the SCANBS swap
unit. The identifications are made iteratively on the basis of position comparison and matching criteria.

An absolute offset search space is set up to correspond to the nominal spacecraft pointing error. It is
subdivided into N x N search boxes, where N is given by the SEARCH SPACE DIMENSION parameter. Each
search box represents an error range between the absolute guide star location and its identified bright star.

For each search box, the algorithm loops through each absolute guide star for identification in the bright
star list. The brightest star in the bright star list whose offset relative to the absolute guide star under
consideration is within the error box is taken to be the corresponding location. After all absolute guide stars
are identified this swap unit exits and CALDRFT is invoked by the ACQUIRE_FIELD task. The calculated
offset is then used to facilitate further identification with a more restricted error range. For each search box,
an iteration is done to narrow the star identification criteria.

If the true acquisition offset is not consistent with the search box, then the identification-drift calculation
iteration will lead to a small number of matches. If the true acquisition offset is consistent with the search
box, then we expect to have a large fraction, if not all, of the absolute guide stars identified accurately: The
number of matches between absolute guide stars and the bright star list are used as convergence criterion
for the iteration. If no converged solution is found, then the acquisition offset is set to nil.

Subordinates:
This module includes setup.h.

Dependencies:

4 FUNCTIONAL DESCRIPTION OF INDIVIDUAL TASKS AND TASK CONTROLXMM/OM UM PART1B-DPU 40

The swap unit MAKEAGS_ID is used in the task ACQUIRE_FIELD.
Interfaces:

The MAKEAGS_ID swap unit is invoked thus:
return_status = execute (SWAP_MAKEAGS_ID);
where #define execute load is in effect in the flight version.

The number of words this swap unit reads from global RAM is about twice the sum of the number of reference
stars and the number of bright stars, which has 1090 as a maximum value. It writes only a few words, and
that only on the call that produces the final solution. Thus the total requirement is about 7 DPU cycles. It
requires upto 1.1 kwords of DSP RAM. That number is sensitive to the value of MAX_BRIGHT_STARS.

See XMM-OM/PENN/TC/0021.01.

4.3.16 su_restore_stars.c

Type: C code written for the White DSP swap unit RESTORE_STARS.

Function: This swap unit restores the coordinates of stars in a “catalog” to the unbinned detector pixel
scale and uses polynomial approximations to the MIC distortion to compensate for spatial non-linearity.
In the ACQUIRE_FIELD task it transforms bright star coordinates (as well as second moments and spatial
integration ranges) from binned to unbinned pixel units and corrects the coordinates for the effect of spatial
distortion. In the CHOOSE_GUIDE_STARS task it is first used to transform the bright star coordinates from
binned to unbinned pixel units (without compensation for spatial distortion), and later used to correct the
coordinates of the selected guide stars for the distortion effect. In the TRACK_GUIDE_STARS task it is used
to correct the coordinates of the relocated guide stars for the distortion effect.

The parameter RESTORATION_MODE defines the order of the polynomial used to perform the correction. Sup-
ported values are 3, 4, 5, 6, and 7. The spatial distortion correction is not performed for any other value.
As of this writing, the parameter is defined as 0 (zero).

Subordinates:
This module includes setup.h.

Dependencies: The swap unit RESTORE_STARS is wused in the tasks ACQUIRE_FIELD,
CHOOSE_GUIDE_STARS, and TRACK_GUIDE_STARS.

Interfaces:

The RESTORE_STARS swap unit is invoked thus:
return_status = execute (SWAP_RESTORE_STARS);
where #define execute load is in effect in the flight version.

Global RAM requirements for this swap unit depend on the job it is doing. If it is processing the BRIGHT _STARS,
it requires about 20 times the number of bright stars (a maximum of 1024 words, or 4 DPU cycles). If it
is processing INITIAL_GUIDE_STAR_COORDS or CURRENT_GUIDE_STAR_COORDS, it requires up to 64 words, or 1
DPU cycle. It requires about 200 words of DSP RAM.

See XMM-OM/MSSL/TC/0015 and XMM-OM/PENN/TC/0010.01.

4.3.17 surtrd.c

Type: C code written for the FIXME.

Function: This swap unit handles setup for and acquisition of engineering data. ENGINEERING This swap
unit sets up detector window parameters and writes them into PROC memory so that engineering data
are written into known memory locations. For modes ENG_RAW_DATA, CENTROID_LUT_CALC, and
ENG_PULSE_HEIGHT these window parameters do not correspond to detector pixels. In the engineering

4 FUNCTIONAL DESCRIPTION OF INDIVIDUAL TASKS AND TASK CONTROLXMM/OM UM PART1B-DPU 41

modes, the ICU dictates the portion of the detector to use; the output engineering data will be compatible
with the window parameters defined here.

Subordinates:

This module includes setup.h

4.3.18 su_scanbs.c

Type: C code written for the White DSP swap unit SCANBS.

Function: This swap unit makes a catalog of bright stars in an image as follows:

e 3 reference frame is searched in raster fashion for pixels with more than a threshold number of counts
and indices to those pixels are entered into a buffer;

e when the buffer becomes full, the neighborhood of each bright pixel is searched for the single brightest
pixel;

e image properties of the bright spot (e.g., counts, centroid position, second moments) are derived and
recorded in the “bright star catalog,” bright_stars]];

e an index array is created which can be used to access bright_stars[] in order of decreasing star brightness;
and

¢ the indices are used to save the bright star catalog in global memory in this order;

¢ once all above-threshold pixels in the buffer are processed for bright stars, the buffer is reset and bright
pixels above threshold is searched in the remaining portion of the reference frame. This procedure
continues until the entire reference frame image is processed;

e the total number of bright stars found in the reference frame image is monitored. If there are too many
bright stars, the threshold is raised and the scan redone. If there are too few bright stars, then the
threshold is lowered and the scan redone.

SCANBS is used in the tasks ACQUIRE_FIELD and CHOOSE_GUIDE_STARS. In the latter the bright star
catalog is searched for star concentrations (i.e., crowded fields) and these are recorded for later use as
exclusion zones when guide stars are sought for tracking in SCANGS.

In this swap unit, the detector field of view is mapped into NMAXX x NMAXY (nominally 1024 x 1024) “binned
pixels.” Hence the bright star coordinates and the crowded box locations are expressed in units of binned
pixels.

Subordinates:

This module includes setup.h.

Dependencies:

The swap unit SCANBS is used in the tasks ACQUIRE_FIELD and CHOOSE_GUIDE_STARS.
Interfaces:

The SCANBS swap unit is invoked thus: return_status = execute (SWAP_SCANBS);
where #define execute load is in effect in the flight version.

This swap unit reads about

5 + (# iterations) * ((nmaxx * nmaxy) + (nominal x.dim * nominal_y. dim) * nbs) words from glob-
al RAM. This is typically about 1.3 Mwords per iteration. Currently there is a limit of 4 iterations. It writes
about 1 + nbs * SIZEOF_STAR words to global RAM, plus a few more if a log is kept. This will typically be

4 FUNCTIONAL DESCRIPTION OF INDIVIDUAL TASKS AND TASK CONTROLXMM/OM UM PART1B-DPU 42

Bit Value Failure Failure criterion
0 1 Centroid off-center > 2 pixels from center of integration box.
1 2 Non circular 8|width — height| > width + height
2 4 Star image too big width > 24 or height > 24
3 8 Sq Moments to big moment, > 16 or moment, > 16
4 16 Unequal Sq moments difference > 6
5 32 XY moment too big momentg, > 8
6 64 (currently not used) -
7 128 Centroid in exclusion zone Star in region of high stellar density.
8 256 Star too bright counts > 6000
9 512 Star too dim counts < 16

Table 2: Quality criterion for guide star assesment in SCANGS. The two left columns list the bit (and
numerical value) which are set when a particular criterion is not met. Any star with a quality value # 0 will
be rejected for use as a guide star.

about 6.7 kwords if nbs = max bright stars = 512. In all, this amounts to about 6 seconds for I/O over
the bus.

The DSP RAM requirements are: words for about 615 external and about 8044 internal variables, plus several
more from auxiliary functions. Thus the total requirement will be about 8700 words if MAX_ BRIGHT _STARS =
512.

See XMM-OM/PENN/TC/0004.03 or the most current version.

4.3.19 su_scangs.c

Type: C code written for the White DSP swap unit SCANGS.
Function: This swap unit is used in the CHOOSE_GUIDE_STARS task.

This swap unit selects a list of good guide stars for tracking from the from a list of bright stars generated by
the swap unit SCANBS. The guide star selection is based on the individual stellar quality indices and other
global considerations. The star quality indices include factor such as the size, skewness, and brightness of
the image (see Table 2). The global considerations are enforced to avoid situation such as guide stars in
crowded regions, crowded guide stars in a local region, and guide stars too close to the edge of the field of
view.

By default, MAX_GUIDE_STARS (16) are sought. Data are retained for as many as MAX_REJECTS (16) brightest
objects which do not satisfy the guide star selection criteria, however these data are down-linked only if
“verbose” reporting of Reference Frame Data has been selected (see Fig. 7).

This program yields 1) locations of guide stars in the current (reference) frame, 2) quality of guide stars, 3)
counts in guide stars in the reference frame, 4) coords of “bright stars” that do not qualify as guide stars 5)
quality of rejected stars, and 6) ref frame counts in rejects.

EXCLUDE_.BORDER EXCLUDE CROWDED FIELDS EXCLUSION ZONE AND ADD EXCLUSION BOX
Subordinates:

This module includes setup.h.

Dependencies:

The swap unit SCANGS is used in the task CHOOSE_GUIDE_STARS.

Interfaces:

4 FUNCTIONAL DESCRIPTION OF INDIVIDUAL TASKS AND TASK CONTROLXMM/OM UM PART1B-DPU 43

The SCANGS swap unit is invoked thus: return_status = execute (SWAP_SCANGS);
where #define execute load is in effect in the flight version.

See XMM-OM/PENN/TC/0004.03 or the most recent version.

4.3.20 su_submit_compress._q.c

Type: C code written for the White DSP swap unit SUBMITCMPRSSQ.

Function: This swap unit manages the timing of DPU operations, selects the task requested by the ICU,
and queues data (i.e. science data, image, engineering image, and references frame) for delivery in the
telemetry stream.

This swap unit is used in the FINISH_.FRAME task. When it is determined that an exposure has completed
and the shift-and-add of the final tracking frame into the complete accumulated image is done, this swap
unit is called to place the DD data on the compression queue. [This may be made a default option in a
future version, with the old calls to DELIVERDATA as the other option.] Data on the compression queue are
compressed as part of the COMPRESS_DATA task by the COMPRESS swap unit.

BLUEFAST_DAT

Subordinates:

This module includes setup.h and uses external program global ram.c.
Dependencies:

The swap unit SUBMITCMPRSSQ is used in the task FINISH_.FRAME.
Interfaces:

The SUBMITCMPRSSQ swap unit is invoked thus:
return_status = execute (SWAP_SUBMITCMPRSSQ);
where #define execute load is in effect in the flight version.

4.4 Red DSP Software

The Red DSP software is partitioned into two packages: the operating system known as RedOS; and the
Red science software. The Red0S is mostly a subset of the DPUQOS, containing all the functions to support
the science software written in C. The symbolic layout of the Red DSP software is shown in Figure 10.

4 FUNCTIONAL DESCRIPTION OF INDIVIDUAL TASKS AND TASK CONTROLXMM/OM UM PART1B-DPU 44

RED DSP SOFTWARE

REDDSP.C
8 RED_CRTO056Y.ASM
= CRED.C
_________________ m__
Y RED.ASM

Figure 10: Symbolic layout of the Red DSP software. See text for details.

4 FUNCTIONAL DESCRIPTION OF INDIVIDUAL TASKS AND TASK CONTROLXMM/OM UM PART1B-DPU 45

4.4.1 RedOS:red.asm

Type: Assembly routine running on Red DSP (part of RedOS).
Function:

The function of this code is to perform system initialisation, code for ISRs, routines for access to global
resources, and C-callable functions that have been written in DSP assembly language for maximum efficiency.

This file provides much the same functionality as the white.asm discussed in §4.2.1

red.asm provides the following functions:

1) Boot strap loader Code: Copy executables for the Red processor from KAL powered Global Program
Storage(GPS) RAM into the On Board RAM. These executables stored in GPS RAM are protected
by Forward Error Correction.

2) loader(): called from BUSIO ISR, this routine access the KAL powered Global Program Storage(GPS)
RAM card and moves executables from there into local memory.

3) FecABlock(): A C callable routine that reads in a 16 word chunk of executables and performs checks
for Single and Multibit errors.

4) ScrubLoader: input a Chunk from GPS RAM and store in global FEC buffer (located in on board
RAM) for FEC Scrubbing.

5) FecFixAnOpcode(): Fix a word in the GPS RAM that has been shown to have a single bit error (by
FFecABlock).

6) FecFix: update FEC error count and FEC error location fix corrupted location in GSP RAM

7) read n zero_sw_in array(): Interface between C code and global 16 bit RAM to allow user to read
then zero out sections of Global memory. Assumes user wants to access 2D array.

8) Stubs for ISRs.

4.4.2 RedOS:red crt056y.asm

Type: Assembly routine running on Red DSP (part of RedOS).

Function: A file that is used to describe the location of all global variables used by both the C and assembly
code. It also defines the location of the stack, the size of usable memory, and a few other variables used by
C memory management tools.

Interfaces:

4.4.3 cred.c

Type: C routine running on Red DSP (part of RedOS).

Function: This file contains basic Red DSP functions that are easiest implemented in C. The main () routine
simply calls reddsp(), which is the master function of the Red science software.

Subordinates:
The cred.c code includes setup.h and cred.h. Its main() routine simply calls reddsp().

Interfaces:

4 FUNCTIONAL DESCRIPTION OF INDIVIDUAL TASKS AND TASK CONTROLXMM/OM UM PART1B-DPU 46

4.4.4 Red Science Software:reddsp.c

Type: C routine running on Red DSP.
Function: The file reddsp. c contains three parts: reddsp(), red task routines, and auxiliary routines.

The reddsp () routine is the traffic control routine for the Red DSP. It is simply an infinite loop continuously
checking the dynamic variable red_task_id. When red_task_id changes (from RED_IDLE_TASK), reddsp()
executes the appropriate task code. Unlike the White DSP code, the Red DSP code is small enough to be
self-contained; there are no Red swap units. The following are currently supported tasks:

RED_IDLE -

This task is actually a “state” (see section 2.6.4). It does nothing but wait for the red_task_id variable to
change. When red task_id does change (by command from the White DSP via SCI link), the indicated
task routine is invoked. Each of the Red DSP tasks resets red task_id to RED_IDLE TASK when finished,
returning control to this state. There is no other code associated with this state.

RED_ABORT -

This task is a place holder for emergency exit. Currently it is executed only if an invalid red_task_id is seen
in the RedOS-Idle loop. Its only action is to return control to the RedOS-Idle state.

RED_INITIALIZE -

This task is used only once, just after DPUOS is loaded. In fact, RED_INITIALIZE is commanded from
the White DSP INITIALIZE task in the current implementation. Its purpose is to initialize all Red DSP
parameters to default values. When done, it returns control to the RedOS-Idle state.

RED_ACCUMULATE_IMAGE -

This task performs the shift-and-add operation for all image mode science windows (mode = 0). Based
on the calculated drift of the tracking frame being processed relative to the reference frame, the collected
image in the image mode window is shifted and added onto an accumulating image, with appropriate binning
(according to paraml and param?2 of the science window configuration). Correction is made for translation
offsets only (and not for roll). This task is straightforward but can be very time-consuming depending on the
number of pixels involved. The task calls an optimized summation engine hand-coded in assembly. In the
current implementation, the RED_ACCUMULATE_IMAGE task is uninterruptable. Upon completion of the
shift-and-add, the task code sets a flag in PROC memory to inform the White DSP that the shift-and-add
has been completed.

While the algorithm is trivial, care must be taken to incorporate the specialized memory access scheme in the
DPU. With memory access limited and non-random, the algorithm is implemented in a read-a-chunk process-
a~chunk fashion. The code is optimized such that it can read in an optimal amount which can be processed
between available memory accesses. At the core of the shift-and-add code is a series of summation engines
called y hopper() coded in assembly language. To help expedite the processing, the optimal y_hopper ()
will be placed on the on-chip memory of the processor. For the simulation version of the codes, the y_hopper
engines are coded in C.

If, as a result of drift by an amount greater than that anticipated when the windows were configured, a
science window drifts beyond the edge of a memory window, some degradation will occur at the edge of
the accumulating image. For this reason, the science windows should be embedded in memory windows
surrounded by a border at least as wide as the estimated maximum drift in the exposure time (nominally
1000 s); in this case the pixel exposure will be uniform in all science window pixels (i.e., same cumulative
integration time per pixel). Here the word “exposure” is used in the meaning commonly used in X-ray
astronomy: the effective area and duration that a part of the sky is imaged are referred to as exposure. The
term “exposure map” is commonly used for imaging and as a normalization procedure before any further
analysis is done. In principle, tracking history information can be used to create an exposure map for cases
when a science window does drift out of its memory window.

Subordinates:

4 FUNCTIONAL DESCRIPTION OF INDIVIDUAL TASKS AND TASK CONTROLXMM/OM UM PART1B-DPU 47

The reddsp.c code includes files setup.h and global_access.c. When compiled for simulation on a Sun
platform, it also includes shared variables.c, sun_util.c, and shared io_functions.c.

Dependencies:
Interfaces:

The Red DSP traffic control routine is called from the main() routine in module cred.c thus: reddsp() ;.
In nominal operation it will never return to the calling routine.

The RED_ACCUMULATE_IMAGE task is the only significant reddsp. c user of resources, and has the following
global memory requirements:

e reads 258 words of window configuration data

e reads N_pix words of tracking frame data, where N_pix is the total number of detector pixels in all image
mode science windows (not the larger memory windows).

e reads and writes N_pix/B words,

where the pixel binning factor B = (1 << bin factorx) * (1 << bin_factor._y).

Thus the total number of words is 258 + N_pix * (1 + 2/B). An upper limit on N_pix is implied by the fact
that the bus access time cannot be greater than the tracking frame time, currently set at 10 seconds, but
may increase to as high as 20 s. Assuming 10 second frame time, the maximum values for N_pix for the
unbinned (1 x 1) and 2 x 2 binned cases are 850000 and 1700000, respectively. This corresponds to upper
limits on the number of DPU cycles of about 3320 and 6640. Note that computational overhead will increase
the time it takes the task to complete. The task requires about 830 words of DSP RAM.

See XMM-OM/PENN/TC/0004.03 (or the most recent version).

4.5 Blue DSP Software

The Blue DSPs accept and process raw data words output from the camera head Blue processing electronics.
The three main processes which take place in the Blue DSPs are processing Image mode data, Raw data and
Fast mode data. Image and Fast mode processing may take place simultaneously, but the input and output
data from each mode are kept separate.

As part of the processing for these three modes, there are interrupt servicing routines also running on the
Blue DSP’s. These are the Raw data Interrupt Service Routine, Serial Communications Interface Interrupt
Service routine and the Bus I/O Interrupt Service Routine. Upon interrupt, the Raw data Interrupt Service
Routine places event data in the appropriate input buffer. The SCI routine handles routine communications
and the Bus I/O Interrupt Service Routine handles writing processed event data over the Global I/O bus.
Figure 11 illustrated the Blue DSP modes, Interface Interrupt Service routine, and background tasks.

The data flow for image mode is shown in Figure 4. For each photon, the Blue DSP must calculate a Small
Word Memory address corresponding the where the photon arrived in the current frame, and then increment
that register. Input event words are stored in an input event buffer by an interrupt driven data handler. A
continuous background process, the address calculator, checks the input buffer continuously for new data.
When there is data in the input buffer, each address is sequentially calculated and these addresses written
to an output address buffer. A second routine checks for events in the output address buffer and increments
this location of the frame in Small Word Memory (Frame is either in Ping or Pong Memory), when it has
access to the Global I/O bus. This second routine reads the address during a bus cycle, increments the value
by one and then writes the new value to this address during the next available bus cycle.

Fast mode is also processed in Blue DSP and a data flow diagram of a Fast mode is shown in Figure 5. Fast
mode also uses a segment of Small Word Memory. Pointers to successive Fast mode frames called slices are
stored in the Fast mode frame buffer. A continously resident process analyzes these slices, totalling counts
received in a given slice, expressing them in compressed, differential format. These totals are written to the
Fast mode data buffer. A second process writes data from the Fast mode data buffer to the Small Word
Memory allocated for Fast Mode data when it has Global I/O bus access.

Raw mode is also processed in Blue DSP and a data flow is shown in Figure 6. Raw mode is similar to
image mode in that photon events are directed to a raw data buffer by the interrupt driven event handler.

4 FUNCTIONAL DESCRIPTION OF INDIVIDUAL TASKS AND TASK CONTROLXMM/OM UM PART1B-DPU 48

A continuously running process checks the raw data buffer for events, and if they appear, divides the 24 bit
event into two 16 bit words for Small Word Memory that are written to the raw data output buffer (The
top 8 MSB are padded with 8 zeros for one word, the second word is the next 16 bits verbatim.) A second
process reads these data from the raw data output buffer and writes them to Small Word Memory when it
has access to the Global I/O bus.

The Blue software runs on both Blue DSP 1 and Blue DSP 2, and consists of a single component which
performs the initial processing of the Blue Detector data. This component is written in assembly language
due to the processing speed required by the maximum Blue Detector count rate.

4.5.1 blue.asm

Type: This is the assembly code running on both Blue DSPs.
Function: The function of the Blue DSP software is described below:

1. Bootstrap Loader —

a) Upon removal of the Reset signal (generated on the Arbiter board) the Blue processor executes
the Bootstrap Loader to transfer executables from the “Blue” portion of the Global Program
Storage RAM into the program execution area of the on board memory.

b) FecTab.asm — Routine that initializes the mask patterns that are used to generate/check the
Forward Error Correction Word used to verify a block of op-codes.

c) FecCode.asm — (FfwrdErrCrection) Routine that checks the validity of a block (15 24Bit op-
codes followed by 1 24Bit Forward Error Correction Word) of op-codes. If a Single Bit Error is
discovered it is corrected in the op-code that is currently being held in the on board RAM.

2. Start — System initialization routine that is pointed to by the reset vector. This routine configures all
on chip and on board peripherals and initializes all software constants and variables. When completed
with initializations it enables interrupts for data collection, global bus activity, and command reception.

3. CLC2 — Main polling loop for address calculation and Fast Mode compression, and Raw data output.
The loop is the background task that the processor spends all of it idle cycles in.

4. Calculate — Routine that converts the 24Bit event word received from OM1 via the data capture
interface into an address and an increment value. The address points to the memory location in Small
Word memory that represents the number of photons that this pixel has been illuminated with. The
increment value, now always set to one by the Blue processing electronics, is used to increment the
address in Small Word memory.

5. CalculateFM — This routine converts the counts, read from Small Word memory into an on board
array, into the packed format used to telemeter the Fast Mode Data to the ground. Prior to the start
of an observation a list of addresses, representing pixels in scientific areas of interest, are passed to
the Blue processor along with a sample time. The sample time is the number of milliseconds between
readings of the provided list of pixels. When the delay has been completed the processor reads the
address, compresses the data in to the Fast Mode Format, and stores that data in the Global RAM.

6. BUSIO — Global BUS Interrupt Service Routine. Global resources are accessed through this routine,
invoked when the Arbiter card passes control of the Global Bus to this processor. This routine can be
best described as a series of If-Then-Else statements. The number of transactions it performs with the
global resources defines the amount of time a processor has the global bus. That number of transactions
is fixed at compile time and care should be made when requesting reads or writes to global resources.

7. Read FM Pixels — Called from BUSIO, reads Small Word RAM locations that contain the values of the
pixels that are in the current Fast Mode Window. Those locations are stored as an array of addresses
that are passed to the processor via the Proc. area of Big Word RAM.

4 FUNCTIONAL DESCRIPTION OF INDIVIDUAL TASKS AND TASK CONTROLXMM/OM UM PART1B-DPU 49

8. Dump_Eng. data— When commanded to, this routine outputs unprocessed 24Bit words that were received
via the Data Capture Interface, note that the receiving hardware strips off the parity bit from the 24Bit
word. Each 24Bit word is split into two 16 bit words, the first contains the most significant 8 bit, the
second the least significant 16 bits.

9. ESCIRec — SCI Recevier interrupt w/error. This routine handles messages from the White processor
that are incomplete or have framing problems. When an error has been detected it resets the interface
and flushes the incoming command buffer.

10. SCIRec — SCI receiver interrupt. The SCI (Serial Communications Interface) receiver routine buffers
bytes received over the SCI interface into 24Bit words. It keeps track of the number of bytes received
until the number received is equal to the transmission length which is embedded in the second byte of
the message. When the correct number of bytes have been received, the complete message is passed
to the command interpreter for execution.

11. COMMAND_INTERPRETER — Called from SCIRec to execute the command received from the White pro-
cessor via the SCI interface.

Commands: Heart beat request, Use Ping address space constants, Use Pong address space constants,
Enable Klingon, Disable Klingon, Enable Events, Disable Events, Enable raw data output, Disable
FM data output, Enable RAM test, Disable RAM test, Load image window constants, Load Fast
Mode window constants, Enable FM data output, Echo ping address calculation constants, Echo pong
address calculation constants.

12. Grab_FM_Constants — Called from BUSIO, after enabled by SCI command “Load Fast Mode window
constants”. This routine reads the variables and the array of addresses that define a fast mode window.
Once all the information has been transferred from Big Word RAM to Onboard RAM the routine
disables further calls from BUSIO.

13. Grab_Address Constants — Called from BUSIO, after enabled by SCI command “Load image window
constants”. This routine reads the constants that are used to convert the 24Bit word received from the
Data Capture interface into an address in Small Word memory and an increment value. Once all the
information has been transferred from Big Word RAM to Onboard RAM the routine disables further
calls from BUSIO.

14 Mem test — Called from BUSIO, after enabled by SCI command “Enable RAM test”. This routine
increments the last 256 addresses on each of the memory boards three times, then disables itself.

15 I11i (Tllegal Interrupt) — Non-maskable internal interrupt that is triggered if the processor performs
an op-code fetch and does not receive a valid bit pattern. Code stub provided to cause reset of system
if execution should ever reach this interrupt.

16. Swi (Software interrupt) — Unused interrupt. Code stub provided to cause reset of system if execution
should ever reach this interrupt.

17. Stkerr (Stack error interrupt) — Unused interrupt. Code stub provided to cause reset of system if
execution should ever reach this interrupt.

18. Trace (Trace interrupt) — Unused interrupt. Code stub provided to cause reset of system if execution
should ever reach this interrupt.

19. Ssil — Ssi interrupt: Unused interrupt. Code stub provided to cause reset of system if execution should
ever reach this interrupt.

20. Ssi2 — Ssi interrupt: Unused interrupt. Code stub provided to cause reset of system if execution should
ever reach this interrupt.

21. Ssi3 — Ssi interrupt: Unused interrupt. Code stub provided to cause reset of system if execution should
ever reach this interrupt.

4 FUNCTIONAL DESCRIPTION OF INDIVIDUAL TASKS AND TASK CONTROLXMM/OM UM PART1B-DPU 50

22. Ssi4 — Ssi interrupt: Unused interrupt. Code stub provided to cause reset of system if execution should
ever reach this interrupt.

4.6 Utilities
4.6.1 blue_split.c

Function: This program creates 3 files for programming BOOTSTRAP proms for the BLUE and RED
processors. It uses the files blue_boot.lod as an input and red_boot.lod as inputs. These files should only
contain the “loader” portion of the Blue and Red .lod files.

Subordinates: This module includes stdio.h.

Interfaces:

4.6.2 boot_split.c

Function: This program uses as input file for address range 0x000 through 0x7fff and pads it as the right
format.

Subordinates:

This module includes setup.h.

Interfaces:

4.6.3 cal_checksum.c

Type: C code written for utilities.
Function: This program calculates the checksum for each file.
Subordinates:

This module includes stdio.h, stdlib.h, and string.h. Interfaces:

4.6.4 cmnder.c

Type: C code written for utilities.

Function: This program converts s-record formatted PROM loads into xmm-om formatted command
strings, in order to reprogram the on-board EEPROMs.

Interfaces:

4.6.5 create_loader_lut.c

Type: C code written for utilities.

Function: This program creates a table file “loader.lut.table” which is list of number of available address-
length jump look up table, for white, blue, red swap units.

Subordinates:

This module includes setup.h.

5 LIBRARY OF DPU SOFTWARE PACKAGE XMM/OM UM PART1B-DPU 51

4.6.6 sizetest.c

Type: C code.

Function: This program is to test the size of existing su units verse the allocated EEPROM space; it
complains if segments of a program are overlapped.

4.6.7 srec.c

Type: C code.

Function: This unit converts Motorola DSP load file records to S-record format. Srec takes as input a
Motorola DSP absolute load file and produces byte-wide Motorola S-record files suitable for PROM burning.
If no file is specified the standard input is read. The Motorola DSP START and END records are mapped
into SO and S7/S9 records respectively. All other DSP record types are mapped into S1 or S3-type records
depending on the source processor.

4.6.8 strip_lodwfec.c

Type: C code. Function: The make file “make_p7_white_asm” strips the white.lod file of the white.asm
code, and thus other files can be concatenated with it (using make_p7) into one promeable srecord file, p7.
“strip_lod”: converted from make p7_etc to be used instead of the several existing versions of this program.

Subordinates:

This module includes stdio.h, stdlib.h, and string.h.

5 Library of DPU software package

5.1 Header files

The functions, types and macros of DPU software are declared in the headers. A list of the header files with
brief descriptions of their contents is listed in Table 1, and complementary descriptions are given below. The
organization of these header files in the DPU software in Figure 12 shows the connection of these headers to
the DPU code (White, Red, or Blue), and their subheader files (e.g., for the set up file, setup.h).

Header files, or include files, are used to simplify the software organization and reduce the software mainte-
nance overhead. Most of the header files consist of symbolic constant definitions of parameters used in the
software. These parameter values are set in one easy-to-find location, making changes in these parameters
easy to perform. Also in the header files are macro and structure definitions.

Figure 12 shows the organization of the header files. The shaded boxes represent software packages, un-
shaded boxes represent the header files, and the arrows show the “include” statements alerting the compiler
to include the header file in the compilation. The header file setup.h in turn includes all the header files
used by the science software in both the White and Red DSPs.

Some of the header files are used in both the assembly language software and the C software. To ensure
consistency between the two packages, and to simplify software maintenance, a UNIX shell script is used
to translate the header files from C to assembly language syntax (see Appendix C). That script is executed
automatically by the DSP compilation scripts, so there is no need to modify the assembly language versions
manually. These header files are indicated in Figure 12 by the dash-lined boxes.

asm dpucfgmap.h contains an address map of the PROC area of global memory, and uses subheader files
of dpucfg_map.h, cwhite.c and setup.h.

5 LIBRARY OF DPU SOFTWARE PACKAGE XMM/OM UM PART1B-DPU 52

cwhite.h is an include file for cwhite.c. It defines offset to data S.A., length of data, header S.A., length
of header, pingpong, defines external data and their procedure definitions, global bus flags, and SSI data
output.

dpu_util.h defines formats of address range, with comments on the standard header.
dpucfg map.h contains an address map of the PROC area of global memory.

idiot.h has the definitions of interface between ICU and DPU protocol datatypes. Since DPU has been
developed at LLAL and SNL, and ICU has been developed at MSSL, some of the convention data type
definition were different to each other. This file provides official code translation of among ICU, DPU, and
their interace. All definitions and header files for communications between ICU and DPU, between DPUOS
and whitedsp, and between DPU codes and SDT codes are included.

macro.h defines function macros such as headers.
mic_restore_params.h gives parameter definitions used in su_restore_stars.c.

our_own_types.h defines usage of floats and data type used in DPU WHITE DSP code such as an interger,
short or long.

red_buffers.h defines buffers that must be allocated first at modulus boundaries as “static”, i.e. for the
rest of the source file being compiled.

red_control.h is used to control RED unit by adding file header, updating shift-and-add on Red DSP, and
numbering red tasks. This header includes setup.h.

red_crt0_equ.h is a header for crt056y.asm

red default.h provides default values of parameters used in Red DSP code.
red_os_variables.h handles buffers, pointers and flags.

red_shared variables.h includes default values of variables used in Red DSP task cod.

red_static_variables.h defines static variables for Red C code. All items in this file are consistent to all
flight units, and are stored in a common static variable area defined in crt056y.asm. The file crt056y.asm
requires this include file for formats. The variables are defined as external subroutine in shared_variables.h.

sci_com.h defines the SCI communication parameters between DSPs.
sci_ram.h defines RAM reserved locations for SCI interface in white.asm.

setup.h is a header to run swap code on DPU or in simulation mode. It has subheader files
of idiot.h, our_own_ types.h, stdio.h, sun_util.h, dpu_util.h, dpucfg map.h, sci_.com.h, white_control.h,
white_default.h, red_control.h, red_default.h, macro.h, white_shared_variables.h, red_shared_variables.h, and
mic_restore_params.h. macro.h, white_shared_variables.h, red_shared_variables.h, and mic_restore_params.h.

white os_variables.h contains SNL handle buffers, pointers and flags.
white_shared variables.h contains default values of variables used in White DSP swap unit code.

white static_variables.h contains static variables for LANL/PSU Swap Unit C code. These items
are common to all flight swap units and stored in a common static variable area defined in crt056y.asm.
This file format is required for use in crt056y.asm. These variables are externally defined as extern in
shared_variables.h.

5.2 Utilities

aouthdr.h contains values for the magic field in aout header. Included by maout.h.
coreaddr.h contains memory map header. Included by srec.c.

dspext.h contains DSP EXT - DSP commom object file format definition extensions. Included by srec.c.

5 LIBRARY OF DPU SOFTWARE PACKAGE XMM/OM UM PART1B-DPU 53

filehdr.h is for file headers. Included by maout.h.
forErrorCorrTable.h contains Forward Error Correction Table. Included by strip_lod wfec.c and strip_-lod wofec.c.

linenum.h There is one line number entry for every “breakpointable” source line in a section. Line numbers
are grouped on a per function basis; the first entry in a function grouping will have 1 Inno = 0 and the place
of physical address will be the symbol table index of the function name. Included by maout.h.

maout.h contains common object file format and file orignization. Included by srec.c.
reloc.h contains relocation types for all products and generics. Included by maout.h.

scnhdr.h The number of shared libraries in a .lib section in an absolute output file is put in the s_paddr
field of the .1ib section header, the following define allows it to be referenced as s_nlib. Included by dspext.h
and maout.h.

storclas.h contains storage classes. Included by maout.h and syms.h.

syms.h defines for “special” symbols. Included by maout.h.

54

5 LIBRARY OF DPU SOFTWARE PACKAGE XMM/OM UM PART1B-DPU
File Name Purpose
asm_dpucfg map.h ASM syntax version of dpucfg map.h
asm_idiot.h ASM syntax version of idiot.h
asm red_control.h ASM syntax version of red_control.h
asm_sci_com.h ASM syntax version of sci_com.h
asm_white_control.h ASM syntax version of white_control.h
cred.h Extern declarations and symbolic constants used by cred.c
cwhite.h Extern declarations and symbolic constants used by cwhite.c
dpu_util.h Function prototypes of the functions written in assembly used
by the C code (e.g., read proc_int) when running on the DPU
dpucfgmap.h Symbolic constants used as addresses of the PROC variables
relative to the starting address of the DPU configuration table
global_access.c C wrapper codes for memory access
idiot.h ICU-DPU Interface Official Translation - symbolic constants used
as data type identifiers for communication between ICU and DPU
macro.h Macros used in the C code (i.e. max)
mic_restore_params.h Symbolic constants used in su_restore_stars to correct
for spatial distortion on the MIC
our_own_types.h Definitions of data types used on DPU and structures
red.h Symbolic constants used by red.asm. Definitions
of addresses (e.g. default), bits of SCI, and port C.
red buffers.h Define storage for OS buffers in static variable area
of on-board memory
red_control.h Symbolic constants for control between RedOS and reddsp.c
red_crtO_equ.h Symbolic constants used by ASM code embedded in cred.c
red_default.h Default values of symbolic constants used in the Red C software
red_os_variables.h Define storage of RedOS variables
red_shared_variables.h Extern declarations of variables shared by the C and A SM codes
(declared in red_static_variables.h)
red_static_variables.h Define storage of variables shared by swap units and/or C & ASM
codes and stored in the static variable area of o n-board memory
sci_com.h Symbolic constants used for SCI commands for communica tion
between DSPs
sci_ram.h Define storage for SCI interface variables
setup.h Master header file that includes header files required for processor
the code is being compiled to run on (i.e., DPU or Sun)
sim blue local ram.h Symbolic constants used by Blue simulation softwar e on a Sun
sun util.h Same as dpu_util.h, but for simulations on a Sun
vbtwl.h Variable Block Tiered Word Length scheme structural definitions
white.h Symbolic constants used by white.asm
white buffers.h Define storage for OS buffers in static variable area of
on-board memory that must be allocated first at modulus boundaries
white_control.h Symbolic constants for control between DPUOS and whitedsp.c
white_crtO_equ.h Symbolic constants used by ASM code embedded in cwhite.c
white default.h Default values of symbolic constants used in White DSP code.
white os_variables.h Define storage of DPUOS variables

white shared variables.h Extern declarations of variables shared by swap units and/or
C and ASM codes (declared in white_static_variables.h)
white static_variables.h Define storage of variables shared by swap units and/or C & ASM
codes and stored in the static variable area of on-board memory

Table 1: Brief descriptions of the header files

5 LIBRARY OF DPU SOFTWARE PACKAGE XMM/OM UM PART1B-DPU 55

Blue DSP Software Block Diagram

14) Enable FM data output.
15) Disable FM data output.

Power-up/ Initialize Blue Background
Reset DSP : Fast Mode
Do Nothing .
Bootstrap Hardware and Loop Computation
Loader Software
Action Action Photon
‘ ‘ Registration
v v for Image
Load Interrupt 1) Reset 56001 I/O Ports. Mode Data
Vector_s and 2) Initialize 56001 Registers
all Flight and I/O Ports.
Software 3) Initialize software
constants and variables. Raw Data
4) Enable Interrupts. Output Mode
5) Return Global Bus.
Raw Data
Input Interrupt
Service
Routine
Serl_al) Action
Communications
Interface Y
Interrupt Service Input a raw
Routine photon and
buffer for later
- registration.
Action
Y
Bus I/0
Interrupt
1) Input command from SCI Interface. Service
2) Execute command. Routine
List of Current Commands: Act‘ion
1) Heart beat request. ‘
2) Use Ping Image accumulation area. y
3) Use Pong Image accumulation area.
4) Debug command 1. 1) Output Status, Error and Heartbeat Information.
5) Debug command 2. 2) Collect Parity error Statistics.
6) Enable Events. 3) If Required Sample Fast Mode Pixels.
7) Disable Events. 4) If Required Output Fast Mode Data.
8) Enable raw data output. 5) If Requested Perform RAM Test.
9) Sparel. 6) If Requested Input Image Window Setup
10) Enable RAM test. Information.
11) Disable RAM test. 7) If Requested Input Fast Mode Window Setup
12) Load Image window Constants . Information.

8) If Requested Output Raw Data.
9) If Required Output Image Mode Data.
10) Return Global Bus.

)
)
)
13) Load Fast Mode Window Constants.
)
)
)

16) Spare2.

Figure 11:

5 LIBRARY OF DPU SOFTWARE PACKAGE

White

Red

XMM/OM UM PART1B-DPU 56

Science Science RedOS Blue
C C C ASM ASM
setup.h
> e
cwhite.h -<J v |->- cred.h
white q ih red_
default.h pu_util. default.h
pmmsmee- r
white_ h red_ \: asm_red_ :_‘
control.h macro. control.h ’z- control.h
It r e e e e o 1
white_shared_| our_own_ red_shared_
variables.h types.h variables.h
TN
1,
i idiot.h K idiot. .
v asm_idiot.h S idiot.h dpucfg_map h_\\
1
mic_restore_ . h
paramsh sci_com.
jm===Veammn jm==Vam==
1 . ! 1 !
) h 1 asm_sci_ Yo asm_ ¢
scl_ram. ' comh :dpucfg_map.h.
lemmmmgme lommmeye-
I P11 (W
| |
Y Y Y Y Y
. white_ white_static_ white_os_ white_
whiteh buffersh variablesh variablesh crt0_equh
Y Y Y y Y
red_ red_os_ red_static_ red_ od h
crt0_equ.h variables.h variables.h buffersh red.

Figure 12: The organization of the header files in the DPU software, e.g. subheaders for setup.h. See text

for details.

A ACRONYMS AND ABBREVIATIONS XMM/OM UM PART1B-DPU

A Acronyms and Abbreviations

AD
ADD
ANSI
BDS
BMW
BPE
COTS
CRC
DBI
DBU
DEM
DPU
DSP
EGSE
EOB
FIFO
GNU
GSE
GUI
ICB
ICU
IDL
KAL
LSB
MIC
MSSL
MSB
OBDH
oCI
oM
0S
RAM
ROM
PC
PD
PROM
PSU
RBI
RTRD
SCI
SDE
SDT
SSI
SWM
™
TSC
VME
X
XMM/OM

Alert Data

Architectural Design Document
American National Standards Institute
Blue Data Stream

Big Word Memory

Blue Processing Electronics (synonym for Detector Processing Electronics)
Commercially available Off The Shelf
Cyclic Redundancy Code

Digital Bus Interface

Digital Bus Unit

Digital Electronic Modules

Data Processing Unit

Digital Signal Processor

Electronic Ground Support Equipment
Electro-Optical Model

First-In First-Out

Gnu Not UNIX

Ground Support Equipment

Graphical User Interface

Instrument Control Bus

Instrument Control Unit

Interactive Data Language

Keep Alive line

Least Slgnifiant Bit

Micro-channel plate Intensified CCD
Mullard Space Science Laboratory
Most Significant Bit

On-Board Data Handling

Observation Configuration Information
Optical Monitor

Operating System

Random Access Memory

Read Only Memory

Printed Circuit

Priority Data

Program Memory

Power Supply Unit

Remote Bus Interface

Real Time Raw Data Mode

Serial Communications Interface
Software Development Environment
Science Data Terminal

Serial Synchronous Interface (between the DPU and the ICU)
Small Word Memory

Telescope Module

Telescope Simulator Card

Versa Module Europa

X window system

X-ray Multi-mirror Mission Optical Monitor

57

B XMM/OM DPU LEXICON XMM/OM UM PART1B-DPU 58

B XMM/OM DPU Lexicon

Pointing —

Observation —

Configuration —

Exposure —

Exposure time (tg) —

Frame —

Tracking frame time (t;) —

Tracking frame —

Current tracking frame —

Previous tracking frame —

a period of time during which the spacecraft is locked onto a celestial field-of-view.
A pointing can consist of one or more OM observations.

consists of one or more exposure(s) planned by one observer or group of observers.
There can be more than one observation per pointing if there are other observa-
tional programs to be carried out on the same field-of-view.

a instrument set-up during which the filter wheel position, window settings, etc.
are fixed.

the final collected data, consisting of Image Mode and/or Fast Mode data, and
other data products associated with a single OM configuration. An OM exposure
can consist of Image Mode data, m > 1 Image Mode frames co-added to produce
the accumulated image (shift-and-add), and/or Fast Mode data, data from a se-
quence of Fast Mode time slices, as well as other data products. Each exposure is
assigned a unique exposure identification number.

an integer number of tracking frame times, tg = mty, the time over which Image
Mode frames are co-added to produce an accumulated image and/or the time over
which Fast Mode data are acquired (typically tg ~ 1000s).

a single image collected at some interim point in an exposure by the DPU, which
then operates on it for some identifiable task. This can be a tracking frame, Image
Mode frame, or Fast Mode frame.

the time over which events are accumulated in Ping/Pong memory to form a
tracking frame. The frame time is constrained by the time required by the DPU
to calculate a tracking solution and perform the shift-and-add. This is not a feature
of the detector but of the DPU, and is not user selectable (t; ~ 20s [TBD]) but
may be selected by the SOC (TBD).

raw image collected in a tracking frame time stored in either the Ping or Pong
memory. The tracking frame consists of photon counts for all detector pixels
within memory windows, whether they are user requested or designated for guide
stars.

is stored in either the Ping or Pong memory, and is where the received MIC events
are registered by the Blue DSPs. This is also the location from where Fast Mode
data are extracted.

is stored in either the Ping or Pong memory — the opposite memory from where
the current tracking frame is stored — and is used for calculating the tracking and
is shifted and co-added to the accumulated image by the shift-and-add process.
The physical location of the current tracking frame and the previous tracking frame
are alternated every tracking frame time.

B XMM/OM DPU LEXICON XMM/OM UM PART1B-DPU 59

Image Mode frame (Ip;5,y) —

Accumulated image (Az,y) —

Fast Mode slice period (tr) —

Fast Mode frame (Fp nz,y) —

Fast Mode time slice (S;;z,y) —

Differential address format —

CCD frame —

a sub-area of the tracking frame consisting of just the detector pixels within the
Image Mode science windows. This frame is shifted and co-added to the accumu-
lation frame by the shift-and-add process.

the Image Mode image stored in big-word memory, consisting of the Image Mode
frames co-added with spacecraft drift compensation (result of the shift-and-add
process).

the time over which data are sampled and formatted in the Fast Mode frame out
of the current tracking frame. This is user selected to be an integer number of
MIC CCD frame times (tr = ntccp), which is generally NOT an integer factor
of the tracking frame time. The CCD frame time is dependent on the number of
CCD rows read out (see description below). The MIC detector operates on a clock
independent of the DPU clock. So, to avoid beating effects, fast mode synchronizes
to CCD frame markers supplied by the MIC detector (see section 3.2 of the DPU
ADD for details).

the image accumulated in the current tracking frame after a integer number of
Fast Mode slice periods. Extracted directly from the tracking frame, this frame
contains all the events accumulated from the beginning of the current tracking
frame up to the current time; processing is required to subtract the events that
occured in prior Fast Mode slices to obtain the Fast Mode time slice. A Fast
Mode frame is limited to 512 detector pixels (a Fast Mode set). Each exposure
can support up to two independent Fast Mode sets. Here m is the slice number,
n is the tracking frame number, and x and y represent the spatial coordinates on
the detector.

the image from the Fast Mode frame collected during a Fast Mode slice period. A
Fast Mode time slice is calculated by subtracting the previous Fast Mode frame
from the current Fast Mode frame (Si;2.y = Fin,no,y — Fm—1,n;2,y)- A Fast Mode
time slice is limited to 512 detector pixels. Because the Fast Mode slice period is
short, < 1s, each Fast Mode time slice will consist of zero or a few events. Since
they will be sparse, the Fast Mode time slices will be transmitted in differential
address format rather than in image format.

a format for sparsely populated spatial and time data based on the differences
between event addresses in a 1-D representation of the 3-D data space. Since Fast
Mode data consist of few or no events per time slice, it is inefficient to transmit the
time slice in image format. Instead, a list of pixels offsets (the number of pixels)
between events is transmitted. For example, if in a Fast Mode area consisting of
512 pixels, the first time slice contains two events, one at pixel 36 and the other at
pixel 352, the second time slice contains no events, and the third time slice contains
one event at pixel 352, the DPU will transmit the numbers 36, 316(= 352 — 36),
and 1024(= 512 + 512).

one readout image by the CCD detector in the MIC system. The CCD in MIC is
read out nominally at a rate of about 100 Hz. This readout image is processed, in
real time, for photon events by blue detector electronics. Addresses of significant
events are sent to the DPU for data collection. The blue detector electronics
will issue 2 (TBC) beginning of frame markers at the start of each new CCD
frame. The DPU will use these marker to indicate the end of the previous frame

B XMM/OM DPU LEXICON XMM/OM UM PART1B-DPU 60

CCD frame time (teeq) —

Global memory —

Small-word memory —

Big-word memory —

PROC memory —

Ping/Pong memory —

Current exposure memory —

Previous exposure memory —

Local memory —

On-board memory —

On-processor memory —

and synchronize fast mode with the MIC sampling cadence. Two markers are
required, one for each of the Blue DSPs collecting data from the blue detector.

the time between the readouts of the MIC CCD. It is nominally t..q = 10ms,
but could be shorter in the case of detector window configuration requiring only a
small number of CCD rows. This defines the fundamental time resolution of the
entire MIC system.

DPU memory shared by all four DPU DSPs. Global memory is subdivided into
small-word memory and big-word memory.

global memory with 16 bit word length. There are 4194304 words of small-word
memory on the DPU.

global memory with 24 bit word length. There are 1048576 words of big-word
memory on the DPU. Of this, 32768 words are reserved for PROC memory, leaving
1015808 for exposure data storage.

a sub-area of big-word global memory used for storage of data processing parame-
ters and for inter-DSP communication purposes. There are 32768 words of PROC
memory available.

areas in small-word memory used to store tracking frames. While the current
tracking frame is being accumulated, for example, in Ping, the previous tracking
frame in Pong may be used to determine the spacecraft drift (tracking) and the
Image Mode sub-area co-added into the accumulated image (shift-and-add). The
roles of the Ping and Pong areas are reversed after each tracking frame time.

areas of memory, consisting of both large-word and small-word memory, used for
storing the transmitted data products of the current exposure while the exposure
is in progress.

areas of memory, consisting of both large-word and small-word memory, used for
storing the to-be-transmitted data products of the previous exposure while the
ICU is transmitting these data to the spacecraft. The physical location of the
current exposure memory and the previous exposure memory are alternated after
each exposure.

memory located on the processor boards of the DPU, including the memory within
the DSP (both on-board and on-processor memory). This memory area is acces-
sible only by the one DSP physically located on the board where the memory is
located.

memory located on the processor boards of the DPU, but external to the DSPs.
This amounts to 32 kwords of 24 bit words of static RAM.

memory located internal to the DSP56001. See DSP56001 User’s Manual for
details.

B XMM/OM DPU LEXICON XMM/OM UM PART1B-DPU 61

Swap unit —

Detector pixel —

Science window (SCW) —

Image Mode science windows —

Fast Mode science windows —

Fast Mode set —

Tracking science windows —

Memory window (M MW) —

Detector window (DTW) —

a function call that is part of White DSP operation. The swap unit code is
copied from Program Memory local memory before execution. This allows the
White DSP software to be more complex than the constraint of local memory
size would normally allow. Within the code swap units are prefixed by “su_”, i.e.
su_deliverdata.c.

a basic resolution element of the detector (for the MIC detector, a detector pixel
is 1/8 of a CCD pixel [a.k.a. a centroided pixel]).

a contiguous rectangular detector area in which scientific data are accumulated.
There are three types of science windows: Image Mode, Fast Mode, and tracking.
Each science window must fully reside within a memory window. There is no
mutual exclusivity among science windows. No more than 16 science windows are
available per exposure (SCW < 16), 10 of which are reserved as tracking science
windows for tracking guide stars.

user defined science windows for Image Mode data. Image Mode science windows
are binned according to the user specified binning factors and accumulated over the
exposure time. The Image Mode science windows will be slightly smaller than the
memory windows to eliminate detector window edge effects of the shift-and-add
process and allow for the acquisition offset shift.

user defined science windows for Fast Mode data. Fast Mode science window data,
are converted into Fast Mode time slices in the DPU and transmitted in differential
address format.

a set of detector pixels consisting of one or more Fast Mode science window(s),
consisting of no more than 512 detector pixels total. There may be up to 2 Fast
Mode sets per exposure, with independent Fast Mode slice periods.

DPU defined science windows for guide stars. The size of tracking science windows
is set in the DPU software to 32 x 32 detector pixels (tracking memory windows
are 64 x 64 detector pixels). Tracking science window images are not transmitted,
but data products relating to these windows are available.

a contiguous rectangular detector area stored in memory. The total memory win-
dow area cannot exceed 1048576 (1024%) detector pixels, and the number of memo-
ry windows cannot exceed 16 (M MW < 16). Of the 16 possible memory windows,
10 (TBC) are reserved for the tracking science windows. Memory windows cannot
overlap. Due to the size limitation of MIC Detector windows, some memory win-
dows may consist of more than one detector window. They also must consist of
entire MIC CCD pixels, thus only every 16th detector pixel can be at a memory
window boundary and the dimensions of the memory windows must be divisible
by 16. Because the MIC Detector centroiding algorithm uses a 3 x 3 MIC CCD
pixel area, the minimum size of a memory window is 32 detector pixels, or 4 MIC
CCD pixels, in both dimensions.

a contiguous rectangular area of detector pixels. MIC Detector detector windows
are limited to 512 detector pixels in either dimension. No more than 15 detector
windows can be assigned at a time on the MIC Detector (DTW < 15). Detector

B XMM/OM DPU LEXICON XMM/OM UM PART1B-DPU 62

Tracking —

Reference frame —

Shift-and-add —

Guide stars —

Acquisition frame —

Absolute guide stars —

Acquisition offset —

Task —

Bright star submode —

Transient submode —

SCI —

windows must consist of entire MIC CCD pixels, thus only every 16th detector
pixel can be at a detector window boundary and the dimensions of the detector
windows must be divisible by 16. Because the MIC Detector centroiding algorithm
uses a 3 x 3 MIC CCD pixel area, the minimum size of a detector window is 32
detector pixels, or 4 MIC CCD pixels, in either dimension.

the determination of the spacecraft attitude relative to the start of the exposure by
comparison between locations of guide stars in the just-completed tracking frame
and the reference frame.

the frame used as the star zero-drift position reference for the tracking process.
The reference frame is a frame taken at the beginning of an exposure using the
same filter wheel position as used for the scientific data.

the shifting of the Image Mode frame by the amount determined by the tracking
to compensate for the spacecraft drift, and the co-adding of the frame to the
accumulating image.

the stars used in the tracking process to determine the spacecraft drift by compar-
ing their positions in the previous tracking frame to their positions in the reference
frame.

the frame taken, at the beginning of a pointing using the V filter, for comparison
with the up-linked catalog of predicted absolute guide star positions in order to
determine the true pointing of the OM.

the stars used in the acquisition process, at the beginning of a pointing, to deter-
mine the true pointing of the OM. The catalog of absolute guide stars is up-linked
from the ground station for each pointing.

the relative attitude offset (pitch, yaw, roll) between the commanded and actual
satellite pointing, calculated by comparison of the absolute guide stars’ up-linked
positions and observed positions.

A sequence of procedures performed by the DPU’s White DSP on command from
the ICU.

the DPU calculates the position and intensity of the 10 (TBD) guide stars for each
of the tracking frames.

the DPU calculates the position and intensity of the 10 (TBD) brightest sources
in the defined memory windows for each of the tracking frames.

Serial Communications Interface, a serial interface protocol that is supported by
circuits contained in the DSP56001 processor from Motorola. The SCI link is an
”Open Drain” interface, ie. Several DSP56001s can have their respective SCI pins
wired together to form a low data rate network.

C COMPILING UTILITIES XMM/OM UM PART1B-DPU 63

C Compiling Utilities

The DPU code can be compiled for use with the DPU hardware or for simulation on a Sun workstation. The
two versions use mostly identical high-level code, but must be compiled differently. The flight version must
be compiled with the g6k compiler, while the simulation code may be compiled with any ANSI standard
C compiler. The flight code is compiled on a Sun with a suite of makefiles, while a short shell script, which
makes use of a single makefile, is all that is required for the simulation version. The simulation version
of the “color codes” and several programs used in generating simulated data (which are used in ground
tests of the DPU hardware and flight code) and their use are described in “DPU Simulation User’s Guide”
(XMM-OM/PENN/ML/0002) and will not be repeated here.

