XMM Optical Monitor

MULLARD SPACE SCIENCE LABORATORY

UNIVERSITY COLLEGE LONDON					Author: H.E.Huckle

XMMOM INSTRUMENT CONTROL UNIT

SOFTWARE VERIFICATION & VALIDATION PLAN

Document: XMM-OM/MSSL/SP/0026.01

�

Issue�
Date�
Comments�
�
Draft�
May ‘94�
Draft Version for Comment�
�
Issue 1 �
25 May ‘94�
Comments Included�
�

This copy printed at � TIME \@ "hh:mm AM/PM" �12:44 PM� on � TIME \@ "d-MMM-yy" �25-May-94�

�
� TOC \o "1-3" �

Document Overview	� GOTOBUTTON _Toc294501887 � PAGEREF _Toc294501887 �1��

Acronyms and Abbreviations	� GOTOBUTTON _Toc294501888 � PAGEREF _Toc294501888 �1��

References	� GOTOBUTTON _Toc294501889 � PAGEREF _Toc294501889 �1��

Introduction	� GOTOBUTTON _Toc294501890 � PAGEREF _Toc294501890 �2��

Verification Activities	� GOTOBUTTON _Toc294501891 � PAGEREF _Toc294501891 �2��

Reviews, Walkthroughs and Inspections	� GOTOBUTTON _Toc294501892 � PAGEREF _Toc294501892 �2��

Checking S/W Requirements against User Requirements	� GOTOBUTTON _Toc294501893 � PAGEREF _Toc294501893 �2��

Checking S/W Components against Software Requirements	� GOTOBUTTON _Toc294501894 � PAGEREF _Toc294501894 �2��

Unit Testing	� GOTOBUTTON _Toc294501895 � PAGEREF _Toc294501895 �2��

Integration Testing	� GOTOBUTTON _Toc294501896 � PAGEREF _Toc294501896 �2��

System Testing	� GOTOBUTTON _Toc294501897 � PAGEREF _Toc294501897 �3��

Validation	� GOTOBUTTON _Toc294501898 � PAGEREF _Toc294501898 �3��

�

�
Document Overview

This document presents an outline of the XMM-OM Instrument Control Unit (ICU) Software Validation Plan

Acronyms and Abbreviations

DPU�
Data Processing Unit�
�
ICU�
Instrument Control Unit�
�
OM�
Optical Monitor�
�
XMM-OM�
X-ray Multi-Mirror Mission�
�
�
�
�
�
�
�
�
�
�

References

XMM-OM ICU S/W Development Environment	XMM-OM/MSSL/SP/0025

XMM-OM EGSE User Manual			XMM-OM/MSSL/ML/0004

ESA S/W Engineering Standards			PSS-05-0 Issue 2

�
Introduction

For the purpose of this document, verification refers to the set of activities that ensure that software correctly implements a specific function.

Similarly, validation is `end-to-end verification’- i.e. that the software at the end of the development process is compliant with user requirements.

For this first release of this document, the anticipated verification and validation activities will be outlined. As development proceeds, this document will be extended to include details of test plans etc.

Verification Activities

Verification activities planned include:

reviews, walkthroughs and inspections.

checking that software requirements are traceable to user requirements

checking that software components are traceable to software requirements

unit testing - i.e. a test of an individual software routine, function or module

integration testing - i.e. a test of an individual ‘task’ of the system, constructed from the above modules

system test -i.e. a test of the complete ‘multi-tasking’ system

acceptance testing - i.e. validation

Reviews, Walkthroughs and Inspections

These are, and will be , undertaken regularly during the development process, as part of, or in addition to, regular consortium meetings.

Checking S/W Requirements against User Requirements

A matrix of S/W requirements against User Requirements will be produced as part of the Software Requirements Document.

Checking S/W Components against Software Requirements

A matrix of S/W requirements against Software Components will be produced as part of the Software Architecture Design Document.

Unit Testing

The ICU code will be developed under the Tartan ADA development system (see APP-1). The facilities described in that document should enable swift and thorough testing of each module. Unit testing is perceived as being inseparable from module coding. Because each module is not a stand-alone program, driver and/or stub software will be, wherever practicable, developed for each unit under test. A driver will usually be a ‘main program’ that accepts test case data, passes it to the module under test, and prints relevant results. Stubs will serve to replace modules that are subordinate (i.e. called by) the module to be tested. Such a ‘dummy subprogram’ will use the subordinate module’s interface, may do minimal data manipulation or provide dummy data, may print verification of entry etc.

All tested software units will be placed under configuration control.

Integration Testing

It is anticipated that integration of the above units will proceed in a ‘bottom-up’ fashion. Low level modules will be combined together in a manner that will perform a specific software subfunction, and a driver program will be written to test the result. This work will be done, as in unit testing, under the Tartan ADA development system. The work will proceed ‘upwards’ until individual ADA tasks (or the logical equivalent) have been produced and tested. In some cases, the driver program will be required to use test files of data collected during other tests. It should be noted that the Tartan system is embedded in the ICU EGSE (see APP-2) -at least for EOB-2 - and therefore has easy access to any ‘data capture’ files created during tests of e.g. detectors. It will also be possible to drive - e.g. mechanisms directly, and a DPU breadboard will be available.

System Testing

A major concern is the multi-tasking nature of the ICU operation. To this end, it is anticipated that, during the course of software development, a series of VxWorks ‘scripts’ - see APP-2 for full details - will be developed to exercise the system in as realistic a manner as possible. Any command of choice may be added to the VxWorks command ‘C-shell’ simply by writing and loading a C-routine to perform the required command. It is then executed by simply typing the function name and any associated arguments. A sequence of such commands placed into a file constitutes a script. The commands can be executed automatically by redirecting the input of the C-shell to that file. These script files allow complex test sequences to be easily generated, stored and then invoked by a few keystrokes. They are thus a very powerful tool, greatly simplifying verification and regression testing.

These scripts , in effect emulating the spacecraft/ground control system, will run a standard sequence of commands with known responses. As well as being visually inspected during the course of the test, these responses will be archived to disk and compared at a later time against a standard set of expected results. Timing information will be associated with these data, in order to ascertain speed of response and general performance statistics.

In addition, a series of tests scripts and procedures will be developed to check for various failure or exception conditions, and for a graceful and predictable recovery. Amongst the possible error or exceptional conditions that may occur are:-

absence of DPU heartbeat

incorrect or absent DPU response

failure of mechanisms to respond

out of limit values on critical housekeeping parameters

aborted observation

As and when required, it is also possible to write, on the VxWorks system, code simulations of devices or their interfaces. This is useful if you wish to check out code in a more controlled fashion than the actual device can provide, or if the hardware is temporarily unavailable.

It is considered that this is an appropriate level at which formal test plans will be drawn up, conforming, wherever feasible, to the guidelines of the ESA S/W Engineering Standards (PSS-05)

Validation

There are two major aspects of ICU code validation to consider:

Code that is considered stable must be tested over as wide range of operating parameters which may be encountered in flight as is feasible, including performance.

Where code has been revised (e.g. for bug fixes, feature enhancements), tests must be performed to ensure that no new ‘bugs’ have been introduced (regression tests), as well as ensuring that the corrections or new features are working correctly.

The first case is handled by exhaustive system level tests, comparing the results against user requirements. The second is handled by regression testing, followed by modified additional procedures to test the new functionality. All test procedures will be documented as formal test plans, again conforming to PSS-05.

�PAGE �

�PAGE �iii�

