XMM Optical Monitor

��MULLARD SPACE SCIENCE LABORATORY��UNIVERSITY COLLEGE LONDON�Authors: R.A.Gowen, H.E.Huckle��

XMM-OM ICU Software ARCHITECTURAL DESIGN

Document: XMM-OM/MSSL/SP/0059.01

�

CHANGE RECORD

Issue�Date�Comments��draft�March ‘95�draft for comment����������

�TABLE OF CONTENTS

� TOC \o "1-3" �1. INTRODUCTION	
� GOTOBUTTON _Toc342970004
� PAGEREF _Toc342970004 �
1
�
�

1.1 Purpose	
� GOTOBUTTON _Toc342970005
� PAGEREF _Toc342970005 �
1
�
�

1.2 Scope	
� GOTOBUTTON _Toc342970006
� PAGEREF _Toc342970006 �
1
�
�

1.3 Definitions, Acronyms and Abbreviations	
� GOTOBUTTON _Toc342970007
� PAGEREF _Toc342970007 �
2
�
�

1.4 References	
� GOTOBUTTON _Toc342970008
� PAGEREF _Toc342970008 �
3
�
�

2. SYSTEM OVERVIEW	
� GOTOBUTTON _Toc342970009
� PAGEREF _Toc342970009 �
4
�
�

2.1 XMM Mission	
� GOTOBUTTON _Toc342970010
� PAGEREF _Toc342970010 �
4
�
�

2.2 OM Experiment	
� GOTOBUTTON _Toc342970011
� PAGEREF _Toc342970011 �
4
�
�

2.2.1 Science	
� GOTOBUTTON _Toc342970012
� PAGEREF _Toc342970012 �
4
�
�

2.2.2 OM Architecture	
� GOTOBUTTON _Toc342970013
� PAGEREF _Toc342970013 �
4
�
�

2.2.3 Telescope Module	
� GOTOBUTTON _Toc342970014
� PAGEREF _Toc342970014 �
5
�
�

2.2.4 Digital Electronics Module	
� GOTOBUTTON _Toc342970015
� PAGEREF _Toc342970015 �
6
�
�

2.2.5 Instrument States	
� GOTOBUTTON _Toc342970016
� PAGEREF _Toc342970016 �
7
�
�

2.2.6 ICU	
� GOTOBUTTON _Toc342970017
� PAGEREF _Toc342970017 �
8
�
�

2.2.7 ICU Software	
� GOTOBUTTON _Toc342970018
� PAGEREF _Toc342970018 �
8
�
�

3. SYSTEM CONTEXT (ICU EXTERNAL INTERFACES)	
� GOTOBUTTON _Toc342970019
� PAGEREF _Toc342970019 �
10
�
�

3.1 Spacecraft Telecommand Queue Interface	
� GOTOBUTTON _Toc342970020
� PAGEREF _Toc342970020 �
10
�
�

3.2 Spacecraft Telemetry Queue Interface	
� GOTOBUTTON _Toc342970021
� PAGEREF _Toc342970021 �
10
�
�

3.3 SSI Interface	
� GOTOBUTTON _Toc342970022
� PAGEREF _Toc342970022 �
10
�
�

3.3.1 SSI-In Interface	
� GOTOBUTTON _Toc342970023
� PAGEREF _Toc342970023 �
10
�
�

3.3.2 SSI-Out Interface	
� GOTOBUTTON _Toc342970024
� PAGEREF _Toc342970024 �
10
�
�

3.4 ICB Interface	
� GOTOBUTTON _Toc342970025
� PAGEREF _Toc342970025 �
10
�
�

3.5 PSU Interface	
� GOTOBUTTON _Toc342970026
� PAGEREF _Toc342970026 �
10
�
�

4. SYSTEM DESIGN	
� GOTOBUTTON _Toc342970027
� PAGEREF _Toc342970027 �
11
�
�

4.1 Design Method	
� GOTOBUTTON _Toc342970028
� PAGEREF _Toc342970028 �
11
�
�

4.2 Decomposition Description	
� GOTOBUTTON _Toc342970029
� PAGEREF _Toc342970029 �
12
�
�

4.2.1 Basic State	
� GOTOBUTTON _Toc342970030
� PAGEREF _Toc342970030 �
12
�
�

4.2.2 Operational State	
� GOTOBUTTON _Toc342970031
� PAGEREF _Toc342970031 �
13
�
�

5. COMPONENT DESCRIPTION	
� GOTOBUTTON _Toc342970032
� PAGEREF _Toc342970032 �
15
�
�

5.1 TC PROCESS	
� GOTOBUTTON _Toc342970033
� PAGEREF _Toc342970033 �
15
�
�

5.1.1 Type	
� GOTOBUTTON _Toc342970034
� PAGEREF _Toc342970034 �
15
�
�

5.1.2 Function	
� GOTOBUTTON _Toc342970035
� PAGEREF _Toc342970035 �
15
�
�

5.1.3 Subordinates	
� GOTOBUTTON _Toc342970036
� PAGEREF _Toc342970036 �
15
�
�

5.2 TC QUEUE	
� GOTOBUTTON _Toc342970037
� PAGEREF _Toc342970037 �
16
�
�

5.2.1 Type	
� GOTOBUTTON _Toc342970038
� PAGEREF _Toc342970038 �
16
�
�

5.2.2 Function	
� GOTOBUTTON _Toc342970039
� PAGEREF _Toc342970039 �
16
�
�

5.2.3 Subordinates	
� GOTOBUTTON _Toc342970040
� PAGEREF _Toc342970040 �
16
�
�

5.2.4 Interfaces	
� GOTOBUTTON _Toc342970041
� PAGEREF _Toc342970041 �
16
�
�

5.3 TM QUEUE	
� GOTOBUTTON _Toc342970042
� PAGEREF _Toc342970042 �
17
�
�

5.3.1 Type	
� GOTOBUTTON _Toc342970043
� PAGEREF _Toc342970043 �
17
�
�

5.3.2 Function	
� GOTOBUTTON _Toc342970044
� PAGEREF _Toc342970044 �
17
�
�

5.3.3 Subordinates	
� GOTOBUTTON _Toc342970045
� PAGEREF _Toc342970045 �
17
�
�

5.3.4 Interfaces	
� GOTOBUTTON _Toc342970046
� PAGEREF _Toc342970046 �
17
�
�

5.4 TASK MANAGER	
� GOTOBUTTON _Toc342970047
� PAGEREF _Toc342970047 �
18
�
�

5.4.1 Type	
� GOTOBUTTON _Toc342970048
� PAGEREF _Toc342970048 �
18
�
�

5.4.2 Function	
� GOTOBUTTON _Toc342970049
� PAGEREF _Toc342970049 �
18
�
�

5.4.3 Subordinates	
� GOTOBUTTON _Toc342970050
� PAGEREF _Toc342970050 �
18
�
�

5.4.4 Interfaces	
� GOTOBUTTON _Toc342970051
� PAGEREF _Toc342970051 �
18
�
�

5.5 MEMORY MANAGER	
� GOTOBUTTON _Toc342970052
� PAGEREF _Toc342970052 �
20
�
�

5.5.1 Type	
� GOTOBUTTON _Toc342970053
� PAGEREF _Toc342970053 �
20
�
�

5.5.2 Function	
� GOTOBUTTON _Toc342970054
� PAGEREF _Toc342970054 �
20
�
�

5.5.3 Subordinates	
� GOTOBUTTON _Toc342970055
� PAGEREF _Toc342970055 �
20
�
�

5.5.4 Interfaces	
� GOTOBUTTON _Toc342970056
� PAGEREF _Toc342970056 �
20
�
�

5.6 CONFIG MANAGER	
� GOTOBUTTON _Toc342970057
� PAGEREF _Toc342970057 �
21
�
�

5.6.1 Type	
� GOTOBUTTON _Toc342970058
� PAGEREF _Toc342970058 �
21
�
�

5.6.2 Function	
� GOTOBUTTON _Toc342970059
� PAGEREF _Toc342970059 �
21
�
�

5.6.3 Subordinates	
� GOTOBUTTON _Toc342970060
� PAGEREF _Toc342970060 �
21
�
�

5.6.4 Interfaces	
� GOTOBUTTON _Toc342970061
� PAGEREF _Toc342970061 �
21
�
�

5.6.5 Data	
� GOTOBUTTON _Toc342970062
� PAGEREF _Toc342970062 �
21
�
�

5.7 TELEMETRY MANAGER	
� GOTOBUTTON _Toc342970063
� PAGEREF _Toc342970063 �
23
�
�

5.7.1 Type	
� GOTOBUTTON _Toc342970064
� PAGEREF _Toc342970064 �
23
�
�

5.7.2 Function	
� GOTOBUTTON _Toc342970065
� PAGEREF _Toc342970065 �
23
�
�

5.7.3 Subordinates	
� GOTOBUTTON _Toc342970066
� PAGEREF _Toc342970066 �
23
�
�

5.7.4 Interfaces	
� GOTOBUTTON _Toc342970067
� PAGEREF _Toc342970067 �
23
�
�

5.8 BLUE	
� GOTOBUTTON _Toc342970068
� PAGEREF _Toc342970068 �
24
�
�

5.8.1 Type	
� GOTOBUTTON _Toc342970069
� PAGEREF _Toc342970069 �
24
�
�

5.8.2 Function	
� GOTOBUTTON _Toc342970070
� PAGEREF _Toc342970070 �
24
�
�

5.8.3 Subordinates	
� GOTOBUTTON _Toc342970071
� PAGEREF _Toc342970071 �
24
�
�

5.8.4 Interfaces	
� GOTOBUTTON _Toc342970072
� PAGEREF _Toc342970072 �
24
�
�

5.9 RED	
� GOTOBUTTON _Toc342970073
� PAGEREF _Toc342970073 �
27
�
�

5.9.1 Type	
� GOTOBUTTON _Toc342970074
� PAGEREF _Toc342970074 �
27
�
�

5.9.2 Function	
� GOTOBUTTON _Toc342970075
� PAGEREF _Toc342970075 �
27
�
�

5.9.3 Subordinates	
� GOTOBUTTON _Toc342970076
� PAGEREF _Toc342970076 �
27
�
�

5.9.4 Interfaces	
� GOTOBUTTON _Toc342970077
� PAGEREF _Toc342970077 �
27
�
�

5.10 MECHANISMS	
� GOTOBUTTON _Toc342970078
� PAGEREF _Toc342970078 �
28
�
�

5.10.1 Type	
� GOTOBUTTON _Toc342970079
� PAGEREF _Toc342970079 �
28
�
�

5.10.2 Function	
� GOTOBUTTON _Toc342970080
� PAGEREF _Toc342970080 �
28
�
�

5.10.3 Subordinates	
� GOTOBUTTON _Toc342970081
� PAGEREF _Toc342970081 �
28
�
�

5.10.4 Interfaces	
� GOTOBUTTON _Toc342970082
� PAGEREF _Toc342970082 �
28
�
�

5.11 DPU	
� GOTOBUTTON _Toc342970083
� PAGEREF _Toc342970083 �
29
�
�

5.11.1 Type	
� GOTOBUTTON _Toc342970084
� PAGEREF _Toc342970084 �
29
�
�

5.11.2 Function	
� GOTOBUTTON _Toc342970085
� PAGEREF _Toc342970085 �
29
�
�

5.11.3 Subordinates	
� GOTOBUTTON _Toc342970086
� PAGEREF _Toc342970086 �
29
�
�

5.11.4 Interfaces	
� GOTOBUTTON _Toc342970087
� PAGEREF _Toc342970087 �
29
�
�

5.12 DPU DATA MANAGER	
� GOTOBUTTON _Toc342970088
� PAGEREF _Toc342970088 �
30
�
�

5.12.1 Type	
� GOTOBUTTON _Toc342970089
� PAGEREF _Toc342970089 �
30
�
�

5.12.2 Function	
� GOTOBUTTON _Toc342970090
� PAGEREF _Toc342970090 �
30
�
�

5.12.3 Subordinates	
� GOTOBUTTON _Toc342970091
� PAGEREF _Toc342970091 �
30
�
�

5.12.4 Interfaces	
� GOTOBUTTON _Toc342970092
� PAGEREF _Toc342970092 �
30
�
�

5.13 ICB	
� GOTOBUTTON _Toc342970093
� PAGEREF _Toc342970093 �
31
�
�

5.13.1 Type	
� GOTOBUTTON _Toc342970094
� PAGEREF _Toc342970094 �
31
�
�

5.13.2 Function	
� GOTOBUTTON _Toc342970095
� PAGEREF _Toc342970095 �
31
�
�

5.13.3 Subordinates	
� GOTOBUTTON _Toc342970096
� PAGEREF _Toc342970096 �
31
�
�

5.13.4 Interfaces	
� GOTOBUTTON _Toc342970097
� PAGEREF _Toc342970097 �
31
�
�

5.14 SSI OUT	
� GOTOBUTTON _Toc342970098
� PAGEREF _Toc342970098 �
32
�
�

5.14.1 Type	
� GOTOBUTTON _Toc342970099
� PAGEREF _Toc342970099 �
32
�
�

5.14.2 Function	
� GOTOBUTTON _Toc342970100
� PAGEREF _Toc342970100 �
32
�
�

5.14.3 Subordinates	
� GOTOBUTTON _Toc342970101
� PAGEREF _Toc342970101 �
32
�
�

5.14.4 Interfaces	
� GOTOBUTTON _Toc342970102
� PAGEREF _Toc342970102 �
32
�
�

5.15 SSI IN	
� GOTOBUTTON _Toc342970103
� PAGEREF _Toc342970103 �
33
�
�

5.15.1 Type	
� GOTOBUTTON _Toc342970104
� PAGEREF _Toc342970104 �
33
�
�

5.15.2 Function	
� GOTOBUTTON _Toc342970105
� PAGEREF _Toc342970105 �
33
�
�

5.15.3 Subordinates	
� GOTOBUTTON _Toc342970106
� PAGEREF _Toc342970106 �
33
�
�

5.15.4 Interfaces	
� GOTOBUTTON _Toc342970107
� PAGEREF _Toc342970107 �
33
�
�

6. FEASIBILITY AND RESOURCE ESTIMATES	
� GOTOBUTTON _Toc342970108
� PAGEREF _Toc342970108 �
34
�
�

7. SOFTWARE REQUIREMENTS VS COMPONENTS TRACEABILITY MATRIX	
� GOTOBUTTON _Toc342970109
� PAGEREF _Toc342970109 �
34
�
�

�

TABLE OF FIGURES

� TOC \f F \t "Table of Figures" \c "Figure" �FIGURE 1: OM MODULE BLOCK DIAGRAM	
� GOTOBUTTON _Toc342970110
� PAGEREF _Toc342970110 �
5
�
�

FIGURE 2: DIGITAL ELECTRONICS MODULE BLOCK DIAGRAM	
� GOTOBUTTON _Toc342970111
� PAGEREF _Toc342970111 �
7
�
�

FIGURE 3: ICU OVERVIEW	
� GOTOBUTTON _Toc342970112
� PAGEREF _Toc342970112 �
14
�
�

FIGURE 4: TASK MANAGER	
� GOTOBUTTON _Toc342970113
� PAGEREF _Toc342970113 �
19
�
�

FIGURE 5: CONFIG MANAGER	
� GOTOBUTTON _Toc342970114
� PAGEREF _Toc342970114 �
22
�
�

�

�INTRODUCTION

Purpose

This document specifies the architecture of the software contained within the Instrument Control Unit (ICU) of the Optical Monitor (OM) instrument onboard the ESA spacecraft XMM (X-ray, Multi-Mirror) mission.

It’s purpose is to provide an understanding of the basic design of the software, and show that it is capable of meeting the requirements set out in the Software Requirements Document RD XMM-OM/MSSL/SP/0024.01.

In order to provide the basic architectural information, the presentation here focuses on identifying the top level ICU software components, their relationships, and how they fit within the overall OM instrument and XMM project.

Because the above focus on conceptual clarity and overall structure, rather than on technical detail, the intended readership is wider than normal, and includes :-

The technical development team for this software, in order to aid clarification of the software structure and show top level compliance with the requirements.

Other OM team members, including PI, project manager, system engineers, software management, PA, test managers, EGSE & operations personnel, COI’s, and others to whom requirements, schedule, interfaces, and quality are relevant.

ESA, as they will assume responsibility for operating and supporting the software from about 6 months after launch up to the end of the mission (perhaps 10 years).

Anyone else who is interested, including other XMM experimenters & users.

Scope

The scope of this document is limited to a top level description of the ICU onboard software associated with the OM instrument.

The ICU is primarily concerned with providing overall system control, spacecraft interface data handling, and instrument monitoring.

It does not include OM onboard DPU software. The DPU software is primarily responsible for the scientific data collection, processing and forwarding to the ICU.

�Definitions, Acronyms and Abbreviations

ADD�Architectural Design Document. (This one!)��CCD�Charge Coupled Diode (detector)��CONFIG�CONFIGuration��DBI�Digital Bus Interface (between OM & spacecraft)��DBU�Digital Bus Unit��DEM�Digital Electronics Module��DPE�Data Processing Electronics (Contains DPU)��DPU�Data Processing Unit��DSP�Digital Signal Processor��EGSE�Electrical Ground Support Equipment��EOB�Electro-Optical Breadboard (development phase)��EPIC �European Photon Imaging Camera��ESA�European Space Agency��FIFO�First-In First-Out (queue)��FOV�Field Of View��HK�HouseKeeping (data/information)��ICB�Instrument Control Bus��ICE�Instrument Control Electronics (Contains ICU)��ICU�Instrument Control Unit��IHM�Interconnecting Harness Module��MACSbus�Modular Attitude Control System bus��NHK�Non-periodic HouseKeeping��OBDH�On-Board Data Handling (system)��OM�Optical Monitor (instrument)��PSU�Power Supply Unit��RAM�Random Access Memory��ROM�Read Only Memory��RBI�Remote Bus Interface (from OM to spacecraft)��RGS�Reflection Grating Spectrometer��S/C�SpaceCraft��SSI�Serial Synchronous Interface��TBA�To Be Added��TBC�To Be Confirmed��TBD�To Be Defined��TC�TeleCommand queue��TM�TeleMetry queue��TM�Telescope Module��TMPSU�Telescope Module Power Supply Unit��UV�Ultra-Violet��XMM�X-ray Multi-Mission Instrument��XOMBI�Xmm OM Batch Interpreter (onboard command interpreter)���References

MSSL XMM-OM User Requirements Specification,	XMM-OM/MSSL/SP/0030.01

MSSL XMM-OM On-Board Software Requirements,	XMM-OM/MSSL/SP/0024.01

ESA XMM EID Part-A,	RS-PX-0016

ESA XMM EID Part-B,	RS-PX-0018

ESA XMM EID Part-C,	RS-PX-0024

“An Optical Monitor for XMM”, Part-4, EID-B.	K.O.Mason, MSSL, 23-Jan-89.

MSSL XMM-OM ICU Detail Design Description	XMM-OM/MSSL/SP/0040.1

User Guide to XMM OBDH System	RS-PX-0015

Packet Structure Definition	RS-PX-0032

�SYSTEM OVERVIEW

Here, an overview of the XMM mission, the OM experiment role and the ICU software contribution, is given.

XMM Mission

The X-ray Multi-Mirror Mission (XMM) is an ESA spacecraft mission aimed at performing detailed imaging spectro-photometry of a wide variety of x-ray sources.

It is designed to be a long duration (~10 years) observatory type mission, open to the astronomical community.

It is planned be launched at the end of the century (~1999), placed into a 48 hour highly eccentric inclined orbit, and have continuous ground station contact.

The payload is designed to be a mutually complimentary package composed of 3 instruments as follows :-

EPIC�- European Photon Imaging Camera��RGS�- Reflection Grating Spectrometer��OM�- Optical Monitor��OM Experiment

Science

The OM (Optical Monitor) experiment is designed to provide optical coverage of astronomical sources simultaneous with the x-ray coverage provided by the EPIC and RGS instruments.

Onboard optical observations remove the need for simultaneous ground based observations which are difficult to organise, expensive, and frequently fail due to bad observing conditions. There is also the added difficulty of correlating ground event times with those from the spacecraft. Furthermore, a spaceborn optical monitor allows extension of the wavelength range into the UV.

Such simultaneous optical and x-ray information about astronomical x-ray sources is very important to understanding these objects, and in particular provides :-

Optical variability measurements simultaneous with x-ray measurements.

Astrometry. (e.g. Identification of optical counterparts)

Broad band colours/ low resolution spectroscopy.

Improved spacecraft attitude reconstruction for the x-ray observations.

Simultaneous correlation’s of optical & x-ray events/periods.

Optical measurements extending into the UV. (The Hubble telescope is the only other way to provide this information but will be too heavily subscribed to perform this function for the XMM mission routinely.)

Ratio of optical to x-ray flux. (Important for cosmological studies of quasars and galaxies).

Studies of optical objects which may have no x-ray counterparts. (Serendipitous data which may be used for e.g. asteroseismology, and microvariability which may provide insight into the internal structure of such objects.)

OM Architecture

The OM instrument, which is capable of achieving the above scientific goals, is composed of 3 modules as follows:

TM (TELESCOPE MODULE)

Contains Optical/UV Telescope - Baffles, Mirror, and Dichroic beam splitter.

Contains Red Detector System.

Contains Blue Detector System.

Contains TM Power Supply .

Is coaligned with, and has a fov of 30 arc mins, corresponding to that of the x-ray instruments.

DEM (DIGITAL ELECTRONICS MODULE)

Contains Data Processing Electronics, including processors (DPU).

Contains Instrument Control Electronics, including processor (ICU).

Contains DEM Power Supply.

INTERCONNECTING HARNESS MODULE

Between the Telescope Module and the Digital Electronics Module.

Protection against failure in space is provided by a redundant DEM and Interconnecting Harness, and within the TM by a redundant blue detector. There is no redundant red detector.

The relationship between these modules and the redundant modules is shown in Figure 1 below.

Telescope Module

Light entering the OM instrument will pass through the telescope module mirror system, and then be split by a dichroic into 2 beams, one passing into the red detector system and the other to the blue detector system.

Light entering each detector system first passes through a filter wheel assembly prior to

�

Figure 1: OM Module Block Diagram

entering the detector camera head and associated detector electronics. Each filter wheel carries 7 filters, 2 grisms, a focal expander, and a blank [R3(p4)].

Individual characteristics of each detector system are as follows :-

BLUE DETECTOR SYSTEM

Operates in 170-600 nm wavelength range.

Is designed for small field observations.

To achieve positional sensitivity of 1 arc sec, achieved by active tracking, within the central 8 arc minutes of the fov for blue light.

Will be based on CCD technology, tailored for accurate centroiding of observed photons.

Is designed for single photon counting (by using fast frame readout times of the order of 10 ms).

CCD basic format of 2048x2048 pixels, with commandable options allowing 16 sub-areas (windows) of the full image to be selected for readout.

A further commandable option will cause adjacent pixels to be binned, resulting in reduced resolution image of 1024x1024 pixels.

RED DETECTOR SYSTEM

Operates in the longer 550-1000 nm wavelength range, as the name ‘Red’ implies.

Is designed for large field observations.

To achieve positional sensitivity of 4 arc secs, over 30 arc min diameter for red light.

CCD basic format of 1024x1024 pixels, with commandable options allowing 16 sub-areas (windows) of the full image to be selected for readout as for the blue detector.

A further commandable option will cause adjacent pixels to be binned, resulting in reduced resolution image of 512x512 pixels, as for the blue detector.

The CCD exposure times will range from 0.5 to 1000 secs.

The blue-detector, with a 1 arc sec pixel size, will be capable of detecting a B=24th magnitude start at 5 sigma in 1000 sec in white light, and B=23.5 using a B-band filter. For fast timing studies, a star of B=15 will yield 400-800 counts.s-1 (unfiltered), or 80 counts.s-1 in the B band [R5].

Digital Electronics Module

The digital signals from the detectors will be passed to a remote Digital Electronics Module (DEM) via an interconnecting harness. This harness will also carry power, synchronisation information, keep-alive line, and an Interface Control Bus (ICB). The ICB will be used to control and monitor the detectors, mechanisms, and TM power supply, and will be based on the MACS-bus.

Within this DEM there will be the Data Processing Unit (DPU) to perform basic science data reception and processing including some data compression. The processed data will then be passed to the Instrument Control Unit (ICU) processor for possible further data compression & packetisation, prior to being passed to the spacecraft OBDH system for eventual transmission to the ground. The ICU will also provide the basic instrument control function, housekeeping monitoring, and engineering/problem reporting and correction facilities. The DPU and ICU will communicate via a Serial Synchronous Interface (SSI).

The interface from the ICU to the spacecraft for data downlink and command uplink will be carried by a digital bus interface.

The ICU is required to support a telemetry rate of up to 40 kbps (S/W Reqs Doc) �[R1(p6)].

(The EID-A allocation is 4 kbps [R2(p62)], and the EID-B requirement is 8 kbps [R3(p550].)

A block diagram of the DEM structure is shown below in figure 2.

�

Figure 2: Digital Electronics Module Block Diagram

Instrument States

The OM instrument will operate in a number of states as follows [R0] :-

Initial Status

Safe

Idle

Engineering & Calibration

Science

Each of these states are mutually exclusive

Within the above SCIENCE state 2 primary observing modes will be operated as follows :-

IMAGE OBSERVING MODE - Produces a single integrated image.

The integrated image is formed by addition of shorter accumulation images called tracking frames, where each frame is corrected for spacecraft pointing drift.

FAST OBSERVING MODE - Produces a time-sliced stack of images.

Drift compensation is not carried out, but calculated and transmitted with the data. Because of memory and telemetry limitations, only a portion (window) of the full images will be stored and telemetered. Selection of up to 15 window s will be available.

For the blue detector both IMAGE and FAST observing modes can be operated simultaneously.

For the red detector only IMAGE or FAST mode can be operated at one time.

Parameters for a science observing mode will include :-

Observing mode (off, image, or fast)

Filter selection

Exposure Time

Frame accumulation time

Window selection for fast mode

Tracking detector.

Sub-mode (bright star, or transient)

In addition, engineering modes will require processing of data from the detectors.

ICU

The ICU is the Instrument Controller Unit within the Digital Electronics Module, whose purpose is primarily concerned with providing overall system control, spacecraft interface data handling, and instrument monitoring as follows :-

To control the OM instrument via ground commanding.

Including instrument configuration set-up.

Including provision of an onboard macro store.

To schedule & monitor observation sequences.

To collect & telemeter housekeeping data to monitor the state of the instrument.

To collect science data from the OM DPU, compress, format and telemeter it.

To monitor & safeguard the instrument in the event of a malfunction.

To allow diagnostic data collection and telemetering in the event of a malfunction.

To allow engineering reconfiguration in the event of a malfunction.

Including code uplink, selective memory use & selective hardware control.)

The ICU will consist of [R6] :-

A single MA31750 processor�To support the above functionality in software.��ROM memory�To provide rad hard code storage. (E.g. for booting, code uplink, memory diagnostic downlink (TBC)). Amount 2 Kbytes.��RAM memory�To provide normal code and data storage. Amount 192 kwords (TBC).��Associated electronics �To support the required interfaces to the spacecraft, other DEM and OM instrument components.��

ICU Software

The ICU software will consist of 2 separate programs :-�

BASIC STATE�This will reside in ROM. As much as possible ill be written in 31750 assembler to keep the size down.��OPERATIONAL STATE�This will reside in RAM (TBC). Will be mostly written in ADA, with possibly some 31750 assembler coding where fast code execution is required.��

The basic state software will be booted in from ROM. It will be responsible for loading the operational state code into RAM for both the ICU and DPU from ground. In fact, all the application code at first turn-on of the instrument in orbit will have to be uplinked in this manner as their will be no other storage of this code onboard other than the RAM area.

After first uplink of all the main application code to RAM, the spacecraft Keep-Alive facility will be used to retain this code in RAM for subsequent use without requiring further uplink.

�SYSTEM CONTEXT (ICU EXTERNAL INTERFACES)

All the external interfaces to the ICU software are shown in the OM ICU main application software architectural diagram (Figure-3), and are explained below :-

Spacecraft Telecommand Queue Interface

This interface is implemented as a FIFO queue in a RAM memory area internal to the ICU. �Its purpose is to allow telecommand packets for the OM to be input. �Commands will be received in packets from the DBI using the RBI protocol. �Telecommand Packets will conform to [R9].

Spacecraft Telemetry Queue Interface

This interface is implemented as a queue system in a RAM memory area internal to the ICU.�Its purpose is to allow prioritised telemetry categories to be output from the ICU to the spacecraft. �Telemetry Packets will conform to [R9].

SSI Interface

For software purposes, this link is modelled as a two way interface as data may come from the DPU in an unsolicited form (e.g. ‘heartbeat’ blocks, event ‘alerts’).

SSI-In Interface

This is the Serial-Synchronous Interface input to the ICU from the DPU.�Its purpose is to allow science and housekeeping data to be input from the DPU.�It will receive both solicited and unsolicited information.

SSI-Out Interface

This is the Serial-Synchronous Interface output from the ICU to the DPU.�Its purpose is to allow control of the DPU including science observing modes, and for data requests.

ICB Interface

This is the Instrument Control Bus and will be used to control and monitor all the other (non DPU) OM hardware. All data sent to the ICU on this bus mist have been ‘solicited’, so for software purposes is modelled as a single port.

The controls include :-

Red & Blue Detector Set Up such as:

Windows

Acquisition mode (Full or Low resolution)

Voltages

Integration times

Start/Stop integration

Frame duration’s

Filter wheel selection

PSU Interface

This an ICU port from the Power Supply Unit (PSU) to allow the ICU to monitor PSU voltage and current.

�SYSTEM DESIGN

Design Method

The design methodology is “object-based”, i.e. each module in the system denotes an object from the problem space (e.g. ‘real’ objects such as the blue detector, or ‘soft’ objects such as an on-board telemetry manager.

By object, we mean an entity that has

a state (i.e. a value or values)

actions it suffers or can apply to other objects

It is recognised that it is not possible to have a perfect knowledge of a software problem at the start, i.e. the growth of understanding is an iterative one. It is therefore assumed that previously unrecognised problems will be found as the project proceeds. However, since the design corresponds to the ‘real world’, it is hoped that the resultant changes will not radically affect the design. Instead, they will only impact those modules associated with the affected objects. This is also a good system in situations where important sub-systems require early development, and where some elements are not well known early on.

Therefore, the steps used are as follows:

Identify the objects and their attributes.

Identify the operations that affect each object and the operations that each object must initiate.

Establish the visibility of each object in relation to other objects.

Establish the interface of each object.

Implement each object (usually as an ADA package).

We have been guided by ESA PSS-05 software engineering standards, though some differences arise because of the small in-house software team (2-3 people) involved in this project and the prioritised nature of the work required. This means that the ADD at this stage does not need to be sufficiently detailed for remote or unfamiliar software engineers to undertake the detailed design and coding stages. In conjunction with this, the prioritised nature of the work (e.g. that the basic external interfaces require testing first) means that some tasks will be defined to a higher level for the earlier phases of the project. Because of the above, this ADD will not be quite as detailed or uniform as normally expected by PSS-05 in a large, single phase development.

(Historically, Hatley-Pirbhai diagrams were used to express and analyse the data and control flows for the software requirements [R1]. For the early breadboard EOB part-1 ICU functionality was provided by code written in ‘C’ on the EGSE. The EOB part-2 phase was supported using the MA31750 processor with ICU code written in ADA and assembler).

�Decomposition Description

The ICU software is composed of 2 programs as follows :-

BASIC STATE

OPERATIONAL STATE

The top level description of each of these programs is given below :-

Basic State

This will be booted in from ROM, and have the following functionality (TBC) :-

Allow uplink of the main application code from the ground.

(In fact, since no other storage than RAM will exist for the main application code, it will have to be uplinked at first turn-on in orbit. Keep Alive memory will allow retention of this code subsequently.)

Allow boot from RAM or load from ground.(Allows running main code without uplink)

Allow diagnostic downlink of memory from the ICU and DPU.

Allow simple uplinked commands and telemetry downlink of basic housekeeping for simple operations and for diagnostic purposes. This will require access to the same interfaces as the main application code. Therefore it will reuse as much of the ineterface code from operational state as possible.

�Operational State

This code will have to be uplinked from ground and stored in RAM, and will provide the main science, control, health, diagnostic, and engineering functionality for the OM instrument.

The top level decomposition for the ICU main application software modules are shown in Figure 3, which also shows their interrelationships and the direction of data or control flow between the modules, as well as the external interfaces.

The formal meaning of the figure 3 elements, is explained below :-

Rounded rectangles mean a major software element, usually an ADA package. �(Formally an ADA package is a related collection of resources, which may contain tasks, program units, declarations, data objects, and data types, or other packages.)

The enveloping dashed rounded rectangle represents the boundary of the ICU software.

Elements within this dashed rectangle will be ICU software elements without external interfaces.

Rounded rectangles which overlap the edges of the enveloping dashed rectangle are those ICU software elements which have external interfaces.

Arrows indicate data or control flow between the particular rectangles.

A brief explanation of each top level software item follows :-

TC QUEUE�Provides ability to control and get telecommand packets from the telecommand queue.��TC PROCESS�Verifies, acknowledges, and routes telecommand packets - the ‘main’ program.��TASK MANAGER�Implements the task management packet requests and state changes, via telecommand or autonomously via CONFIG MANAGER (States are initial, safe, idle, engineering & calibration, science) �Will allow autonomous instrument control via macro command store��MEMORY MANAGER�Supports memory uplink and downlink, and memory checksum calculations.��TM QUEUE�Provide ability to control and queue telemetry packets for downlink.��CONFIG MANAGER�Collects and analyses instrument subsystem configuration information for ‘unsafe’ conditions and issue ‘safing’ commands autonomously. �Provide thermal control. �Will collect and pass HK packets to the TM QUEUE Will collect and pass HK packets to the TM QUEUE��TELEMETRY MANAGER�Will enable/disable generation of TM packet types �Will report telemetry generation status to downlink.��BLUE�Will control blue detector, and request blue det HK info.��RED�Will control red detector, and request red det HK info.��MECHANISMS�Will control & monitor mechanisms (filter wheels and dichroic).��DPU�Will configure and control DPU modes. �Will control data taking from DPU by DPU DATA MANAGER.��DPU DATA MANAGER�Will take science data from the DPU, compress & send to TM QUEUE, monitor DPU heartbeats��ICB�Controls info to/from the instrument subsystems using the ICB interface.��SSI OUT�Passes control info to the DPU using the SSI interface.��SSI IN�Obtains info from the DPU using the SSI interface.��

�Figure 3: ICU Overview

� EMBED Visio.Drawing.3
�
�
�

�COMPONENT DESCRIPTION

The components are described below.

TC PROCESS

Type

ADA procedure.

Function

This is the ‘Main Program’ for the ICU

Will obtain telecommand packets obtained from the queue area.

Will route telecommand packets to appropriate other modules as shown in Figure 3

Subordinates

Can reset the telecommand queue area using TC QUEUE and telemetry queue TM QUEUE.

Gets telecommand packets from the queue area using TC QUEUE.

Routes telecommand packets to the appropriate manager i.e.

Packet Type�Software Component��Task Management�TASK MANAGER��Memory Maintenance�MEMORY MANAGER��Telemetry Management�TELEMETRY MANAGER���TC Queue

Type

ADA Package.

Function

Defines the memory area to which the spacecraft will write telecommand packets

Performs first level packet validity checking (checksum, type/sub-type combinations).

Provides the ability to initialise the telecommand queue area.

Provides the ability to get a telecommand packet from the queue area.

Subordinates

Sends unsuccessful acknowledgement packet to TM QUEUE in the event of failed first level check.

others TBA

Interfaces

Procedure RESET;

Clears the Packet Telecommand queue by resetting all pointers within the queue to the start state

Procedure GET(PACKET : out PACKET.TC_TYPE; SUCCESS : out BOOLEAN);

if SUCCESS is TRUE then a telecommand packet has been found in the telecommand queue, and has been removed from the queue and placed in PACKET.

if SUCCESS is FALSE, no packet was found.

�TM Queue

Type

ADA Package.

Function

Will define the memory area to be used to store telemetry packets, which are to be taken by the spacecraft.

Will provide initialisation of the telemetry packet storage area.

Will accept requests to telemeter packets to the spacecraft from several ICU software modules at either ‘normal’ or ‘high’ priority.(Should both low and high priority requests be outstanding simultaneously, then the high priority telemetry packet will be entered into the queue, before again re-checking requests.)

Note: A single telemetry queue will only allow high priority packets to be placed at the end of the telemetry queue. (I.e. queue jumping will not be possible).

Subordinates

TBA

Interfaces

Task PROTECTED.RESET;

Clears the Packet Telemetry queue by resetting all pointers within the queue to the start state

Task PROTECTED.PUT(LEVEL)(PACKET : in out PACKET.TC_TYPE;

		 SUCCESS : out BOOLEAN);

if SUCCESS is TRUE then a telemetry packet has been copied from PACKET and placed in the telemetry queue

if SUCCESS is FALSE, the queue was full and no action was taken.

LEVEL can take 2 value (HIGH or NORMAL). Priority is given to requests with LEVEL = HIGH.

�Task Manager

Type

ADA Package.

Function

Will receive ‘task management’ telecommand packets from TC PROCESS. Commands acted on will include the following functionality :

Instrument control �Load parameters, start & abort operations��Macro control�Store & operate��Mode control�Initial, safe, idle, engineering & calibration, science)�(It will use information from the CONFIG MONITOR to autonomously monitor the instrument health and to put the instrument into safe state.)��

Will issue appropriate verification packets in the event of command packets affecting Mode changes, Macro storage, and XOMBI

Subordinates

The task manager carries out its commands by constructing a series of calls to the appropriate software ‘object’ or objects which have the detailed knowledge of the ‘real world’ object under command, i.e.:

Object�Module��DPU�DPU��Blue Detector�BLUE��Red Detector�RED��Mechanisms�MECHANISMS��Macro Store�MACRO (internal)��Macro Control�XOMBI (internal)��

The internal structure of the task manager is shown in figure 4. A detailed description of the modules therein will be in a later release of this document. The XOMBI and MACRO items are still under discussion.

A key sub-component of the task manager is XOMBI, which is responsible for macro command interpretation. It incorporates sufficient flexibility to operate the instrument by varying degrees of autonomous control. It also provides economic command uplink requirements, and can allow new ways of instrument operation without the uplinking of new software as the mission progresses. XOMBI will be responsible for operating the commands stored in the MACRO store.

It will issue appropriate verification packets in the event of command packets affecting Mode changes, Macro storage, and XOMBI by interfacing to TM QUEUE.

Interfaces

Procedure REQUEST(PACKET : PACKET.TC_TYPE);

The task management telecommand packet in PACKET is passed to the manager for processing.

�Figure 4: TASK MANAGER

� EMBED Visio.Drawing.3 ���

�Memory Manager

Type

ADA package.

Function

Performs those actions required by the memory maintenance telecommand packets, i.e. for both the ICU and DPU will support:

Uplinking to memory

Downlinking of memory

Calculation of memory checksums

It will receive its control from telecommand packets routed via the TC PROCESS module.

It will issue appropriate verification packets.

Subordinates

In order to support memory uplinking and downlinking of DPU memory, it must call the DPU controller

module DPU.

It will issue appropriate verification packets by interfacing to TM QUEUE.

Interfaces

TBD

�Config Manager

Type

ADA package.

Function

Will request, collect and analyse configuration information from subsystems.

Will monitor the configuration for unsafe conditions and issue the appropriate ‘safing’ commands to the appropriate module.

Will form HK packets from configuration information and send to TM QUEUE module.

Will perform the thermal control of the telescope module.

Will accept TM HK requests from TELEMETRY MANAGER.

On request, will send configuration information to a subsystem controller.

Provides a ‘semaphore’ facility in the form of module EVENT MANAGER so that synchronism between ADA tasks may occur (the extent to which this facility will actually be used is a function of the level of on-board autonomy required, a subject still under discussion).

Internal structure of the configuration manager is shown in figure 5

Subordinates

Communicates with sub-systems via the software control modules DPU, BLUE, RED and MECHANISMS and by monitoring the PSU port.

Interfaces

Procedure TM_ON_OFF(SID : TYPES.UBYTE; ENABLE_DISABLE : BOOLEAN);

if ENABLE_DISABLE is TRUE, telemetry specified the Structure Identifier SID is enabled.

if ENABLE_DISABLE is FALSE, telemetry specified the Structure Identifier SID is disabled.

Interfaces to EVENT_MANAGER are TBD.

Data

The configuration of the instrument (both requested and actual will be held here. Contents and format are TBA.

�Figure 5: CONFIG MANAGER

� EMBED Visio.Drawing.3 ���

�Telemetry Manager

Type

ADA package.

Function

Performs those actions required by the telemetry management telecommand packets, i.e.:

Reports TM packet generation status to TM QUEUE.

Enable/Disable generation of all or specific TM packets under telecommand control from TC PROCESS.

Science packet control requests will be passed to DPU DATA MANAGER

HK packet control will be passed to CONFIG MANAGER.

Verification of Enable/Disable telemetry packet, and request of telemetry status commands, will be passed to the TM QUEUE.

It will issue appropriate verification packets.

Subordinates

As mentioned above, calls TM QUEUE, DPU DATA MANAGER and CONFIG MANAGER.

It will issue appropriate verification packets by interfacing to TM QUEUE.

Interfaces

TBD

�BLUE

Type

ADA Package

Function

Responsible for the control of the blue detector from command packets forwarded from the TASK MANAGER.

Responsible for the requesting of HK information from the blue detector from the CONFIG MANAGER, and the reporting back of that information to the CONFIG MANAGER.

Will report verification of the command packets received from TASK MANAGER to the TM QUEUE.

It will issue appropriate non periodic housekeeping (NHK) packets.

Subordinates

As the blue detector is connected to the ICU via the Instrument Control Bus (ICB), most, if not all, blue detector commands require corresponding commands on the ICB. Therefore this module talks to the ICB via the controller module ICB.

It will issue appropriate verification and non periodic housekeeping (NHK) packets by interfacing to TM QUEUE.

Interfaces

Procedure LOAD_CENTROID_TABLE(START_STOP : BOOLEAN);

if START_STOP is TRUE, starts loading the centroid table into the blue detector.

if START_STOP is FALSE, aborts loading of centroid table into blue detector

Procedure LOAD_WINDOW_TABLE(START_STOP : BOOLEAN);

if START_STOP is TRUE, starts loading a window table into the blue detector based on the window co-ordinates specified by the LOAD_WINDOW_PARAMS procedure.

if START_STOP is FALSE, aborts loading of the above window table into blue detector

Procedure LOAD_DPU_DEDUCED_WINDOW_TABLE(START_STOP : BOOLEAN);

if START_STOP is TRUE, starts loading a window table into the blue detector based on co-ordinates supplied to the ICU by the DPU after it has selected the tracking guide stars.

.

if START_STOP is FALSE, aborts loading of the above window table into blue detector

Procedure INTEGRATION(START_STOP : BOOLEAN);

if START_STOP is TRUE, starts an integration on the blue detector

if START_STOP is FALSE, stops an integration on the blue detector

Procedure DOUBLE_EVENT_RECOGNITION(ENABLE_DISABLE : BOOLEAN);

if ENABLE_DISABLE is TRUE, enables double event recognition on the blue detector

if ENABLE_DISABLE is FALSE, disables double event recognition on the blue detector

�Procedure LOAD_CENTROID_TABLE_BOUNDARIES(BOUNDS : TYPES.INT16_ARRAY);

BOUNDS specifies the boundaries used by LOAD_CENTROID_TABLE to deduce the contents of the centroid table

Procedure LOAD_WINDOW_PARAMS(PARAM : TYPES.UINT16_ARRAY);

PARAM specifies the windows used by LOAD_WINDOW_TABLE to deduce the contents of the window table

Procedure ACQUISITION_MODE(VALUE : TYPES.UINT16);

VALUE specifies the acquisition mode used during the next integration.

Procedure DOUBLE_EVENT_THRESHOLD(VALUE : TYPES.UINT16);

VALUE specifies the double event threshold above which an event is considered to be double.

�RED

Type

ADA Package

Function

Responsible for the control of the red detector from command packets forwarded from the TASK MANAGER.

Responsible for the requesting of HK information from the red detector from the CONFIG MANAGER, and the reporting back of that information to the CONFIG MANAGER.

Will report verification of the command packets received from TASK MANAGER to the TM QUEUE.

It will issue appropriate non periodic housekeeping (NHK) packets by interfacing to TM QUEUE.

Subordinates

As the red detector is connected to the ICU via the Instrument Control Bus (ICB), most, if not all, red detector commands require corresponding commands on the ICB. Therefore this module talks to the ICB via the controller module ICB.

It will issue appropriate verification and non periodic housekeeping (NHK) packets by interfacing to TM QUEUE.

Interfaces

Procedure LOAD_RAM_CODE(START_STOP : BOOLEAN);

if START_STOP is TRUE, starts loading a ram code into the red detector deduced from the window co-ordinates specified by the LOAD_WINDOW_PARAMS procedure.

if START_STOP is FALSE, aborts loading of the above ram code into red detector

Procedure LOAD_DPU_DEDUCED_WINDOW_TABLE(START_STOP : BOOLEAN);

if START_STOP is TRUE, starts loading a ram code into the red detector based on co-ordinates supplied to the ICU by the DPU after it has selected the tracking guide stars.

.

if START_STOP is FALSE, aborts loading of the above ram code into red detector

Procedure INTEGRATION(START_STOP : BOOLEAN);

if START_STOP is TRUE, starts an integration on the red detector

if START_STOP is FALSE, stops an integration on the red detector

Procedure LOAD_WINDOW_PARAMS(PARAM : TYPES.UINT16_ARRAY);

PARAM specifies the windows used by LOAD_RAM_CODE to deduce the contents of the ram code

Procedure SET_FRAME_TIME(MS25 : TYPES.UINT16);

MS25 specifies the Frame Time (units 25 ms) to be used by the red detector during the next integration.

Procedure SET_VERT_PHASE_HV(HV : TYPES.UINT16);

HV specifies the Vertical Phase High Voltage to be used in the next integration.

�MECHANISMS

Type

ADA Package

Function

Is responsible for mechanisms control and monitoring. i.e. blue filter wheels, red filter wheels and dichroic.

Will prevent movement of more than one mechanism at a time.

It will issue appropriate verification and non periodic housekeeping (NHK) packets.

Subordinates

As all mechanisms are ultimately connected to the ICU via the Instrument Control Bus (ICB), most, if not all, mechanisms commands require corresponding commands on the ICB. Therefore this module talks to the ICB via the controller module ICB.

It will issue appropriate verification and non periodic housekeeping (NHK) packets by interfacing to TM QUEUE.

Interfaces

TBD

�DPU

Type

ADA Package.

Function

Implements DPU related telecommand packets forwarded from the TASK MANAGER i.e.:

Responsible for mode control of the DPU processing :-

Put DPU into Boot Idle mode

Initialise DPU

Put DPU into standby mode

Acquire field

Choose guide stars

Track guide stars

Accumulate image

Responsible for set up (configuration) of above DPU modes :-

Guide & reference star positions and intensities

Guide star criteria

Window parameters (for science, & memory windows)

Filter configuration

Exposure time & exposure identifier number

Detector to be used for tracking

Responsible for control of data taking from DPU by DPU DATA MANAGER via the CONFIGURATION MANAGER.

Provides HK packets to the TM QUEUE.

It will issue appropriate verification and non periodic housekeeping (NHK) packets by interfacing to TM QUEUE.

Subordinates

As the command and data path between the ICU and the DPU is the Serial Synchronous Interface, all DPU commands are send over it. Therefore the DPU module calls the SSI command controller SSI_OUT.

Calls are made to the EVENT MANAGER module. This is to co-ordinate with the module DPU DATA MANAGER the downlinking of DPU data.

It will issue appropriate verification and non periodic housekeeping (NHK) packets by interfacing to TM QUEUE.

Interfaces

Procedure COMMAND(WORD : TYPES.UINT16_ARRAY);

Sends the DPU command specified in array WORD to the DPU.

Procedure FETCH_DPU_DATA(START_STOP : BOOLEAN):

if START_STOP is TRUE, starts the dumping from DPU memory of the data currently ready.

�DPU DATA MANAGER

Type

ADA Package

Function

Responsible for taking processed detector data from the DPU.

Compresses science data taken from DPU, and sends it to the TM QUEUE module.

Signals via EVENT_MANAGER to the DPU module data availability from DPU.

Takes information about which type of telemetry packets are required to be downlinked from the TELEMETRY MANAGER.

Provides compressed telemetry packets to the TM QUEUE.

It will issue appropriate verification and non periodic housekeeping (NHK) packets by interfacing to TM QUEUE.

Subordinates

As mentioned above, calls TM_QUEUE and EVENT MANAGER.

Interfaces

Procedure TM_ON_OFF(SID : TYPES.UBYTE; ENABLE_DISABLE : BOOLEAN);

if ENABLE_DISABLE is TRUE, telemetry specified the Structure Identifier SID is enabled.

if ENABLE_DISABLE is FALSE, telemetry specified the Structure Identifier SID is disabled.

�ICB

Type

ADA Package

Function

Passes control information to, and gets information from, sub-systems via the ICB interface.

Information is obtained from, and passed to the BLUE, RED & MECHANISMS modules.

Provides a software mechanism to ensure that only one data request is active by the ICB at any one time.

Subordinates

TBA

Interfaces

The following data types are defined:

type DATA_TYPE is

 record

 SUBADR : TYPES.UINT16;

 DATA : TYPES.UINT16;

 end record;

type DATA_ARRAY is array (INTEGER range <>) of DATA_TYPE;

The interfaces are as follows:

Task PROTECTED.RESET;

Resets the ICB interface.

Task PROTECTED.PUT(LEVEL)(DEST : TYPES.UINT16;

 MACS : DATA_ARRAY);

An array of MACSbus commands stored in MACS is sent to MACSbus address DEST. LEVEL can take 2 value (HIGH or NORMAL). Calls with LEVEL = HIGH are given priority.

Task PROTECTED.GET(DEST : in TYPES.UINT16;

 SUBADR : in TYPES.UINT16;

 RESULT : out TYPES.UINT16);

The contents of the MACSbus location specified by the combination of the address and sub-address stored in DEST and SUBADR respectively is returned in RESULT;

�SSI OUT

Type

ADA package.

Function

Passes command information obtained from the DPU module to the DPU via the SSI interface.

Exclusive access to the interface in guaranteed.

Prioritised access is provided.

Provides a software mechanism to ensure that only one data request is active by the SSI at any one time.

Subordinates

TBA

Interfaces

Task PROTECTED.RESET;

Resets the SSI Interface

Task PROTECTED.PUT(LEVEL)(COMMAND : TYPES.UINT16_ARRAY;

 SUCCESS : out BOOLEAN);

The DPU command stored in array COMMAND is sent over the SSI.

SUCCESS is set TRUE if no error occurs, FALSE otherwise.

LEVEL can be set to HIGH or NORMAL. Priority is given to LEVEL = HIGH.

�SSI IN

Type

ADA package.

Function

Obtains information obtained from the DPU and passes it to the DPU module via the SSI interface.

Subordinates

TBA

Interfaces

GET(DATA out TYPES.UINT16_ARRAY; SUCCESS ; out TYPES.UINT16);

The SSI interface is polled to see if data is available. SUCCESS is set to TRUE if DPU data has been placed in array DATA, otherwise it is set to FALSE;

�FEASIBILITY AND RESOURCE ESTIMATES

TBA

SOFTWARE REQUIREMENTS VS COMPONENTS TRACEABILITY MATRIX

TBA

�PAGE �
34
�

ICU Software Architectural Design�XMM OM/MSSL/SP/0059.draft ���

This copy printed at � TIME \@ "hh:mm AM/PM" �
10
:
19

AM
� on � TIME \@ "d-MMM-yy" �
15
-
Dec
-
95
�

�PAGE \# "'Page: '#'�'" �� Where did this figure come from?

�PAGE \# "'Page: '#'�'" ��need revision

